YdlML

An (X)HTML/CSS Framework

Documentation

2

Introduction

Imprint

YAML PDF-Documentation
based on YAML 3.0.5

Last change: 24.05.2008

© Copyright Dirk Jesse (http://www.yaml.de), Dresden 2005-2008

3 | Introduction

Table of Content

Introduction
1.1 WAt iS YAIMIL? Lttt ettt e s b e sttt e bt e s bt e sae e st e s b ebeennes 7
1.2 WAt iS YAML NOE? ittt ettt et ettt e sab e s bt e e s it e e sabe e e sabeesabeeeanteesabeeesnneenn 8
1.3 Advantages of the FrameWorK. ...t 8
0 70t A U ' To 1= =PRI 9
1.4 Accessibility & Web standards.......c..ueieeciiieiciiiie et aae e 9
1.5 The Structure of the Download Packagecueeeeiiiiieciiiiieceee e 11
1.5.1 The DOWNIoad PaCKage........coeiiiiiiiieiiieecceee ettt e et e e e eatae e e e sanae e e eanaeeaeas 11
1.5.2 The FramewWork FilS........ccoeoiiiiiiiieieeee e 12
1.5.3 Included Layout SAMPIEScoiiiiiiiiiciiie ettt e e e e s e e s sraee e 13
1.5.4 Tools for Layout DeVEIOPMENTccovcuiiiiieiiiieecceee ettt e e e e srae e 14
B IS = o VAT =T G U] o] T] o N 15
1.7 IE5/MaC, NEtSCAPE 4 & CO. .uvveereeeeiiieetee et ettt eeteeeetee e be e e eteeeetveeeebeeesabeeebeeeesaeeeabesennas 15
1.8 TRANKS ettt ettt et e h e he e st s bt et e b e be e s be e st eate et e e nbeenheenaeeea 16

2.1

2.2
23

2.4

2.5

2.6

2.7

A COMPrenenSIiVE CONCEPL.....ciiiiiiieiciiee ettt ettt et e e e st e e e sbr e e e e stteeeesbeaeessbeeeessseeeessnes 17
The BasiCs: FIOATS ...cooiiiiiiieeieeieeeet ettt st st st r e e s s eane s 17
MaArKUP-Fre@ ClEATINEeeieeciiieeeecieee ettt e ettt e e et e e e et e e e e e ataeeeesataeeesassaeeeesssaeeesanseeeanan 18
2.3.1 Method 1: ClearfiX ..cu e ettt sttt et sbe e s 18
2.3.2 Method 2: OVEIflOW ...c..coeiiiiiiieeieee et 19
2.3.3 Why Two Clearing Methods?..........ccouieiiiiiiieccee et 19
Structure of the XHTIML SOUICe COEcouiiiiiiiiinierienieete ettt 19
0 N 0 Lo Yo 1Y/ o T O o oY o] TR 20
2.4.2 The Structure in DeLail......c.ooieeiiiiiiiie ettt e 20
2.4.3 Design Freedom with the Combination Modelcccceveiiieiieeecie e 21
Column Order in SOUCE COUEiiiiiiiieiieriierieee ettt ettt et sre e b e seee e 22
HOW FIOGES WOTK... ettt sttt et 23
2.6.1 LayoUt Preparation ...ccc..uceeieiiiiiiiiieeeeee st ee s e ssirre e e e e s s e s sbaaee e e e s s s s sanbraeaeeeeesnnas 23
2.6.2 Preparing the CONTENTcccii it ee et e e see e s e e e st e e steeereeesnseeenes 25
The Clearing Of HCOI3 ..o e e et e e st e et e e s te e eneeeenreeennes 26
2.7.1 Global Clearing Makes #col3 the Longest ColuMNcceevvveevierecieeciee e 26
2.7.2 Special Clearing Solution for Internet EXplOorerccccoeeeeeciieeeccieee e, 26

4

Introduction

2.7.3 Graphic-Free Column Divider and Column Backgroundscccccceevieenieennereniennnns 28
2.8 SKip-LiNK NaVISatiON....cccoiiuiiieiiiiie ettt ettt e e stee e e etre e e e ebr e e e eeabae e e esabaeeeesabaeeeennrenas 29
2.8.1 Skip-Link Navigation in the YAML Framework........cccccvveeiiiiiee i e 29
CSS Components
I A I o TN A Y o] T T PRSP 32
20 0 R - o= T | o~ PSPPSR 32
3.2 NamMING CONVENTIONS .ccciiiiieie e e e e e e e 33
3.2.1 Basic components (COre fil€S) ...ccuumiiiiiiiiiiiiie et 33
3.2.2 Complementary COMPONENTScc.ueieiiiieeeeiiieeeecireeeesiire e e sree e e s rare e e e e nteeeeenbeeeeenneeas 33
32,3 PAtCNES. .t e nr e 33
I A e Lo =T o Yo - PP 33
3.3 The Central StylEShEELveiii e e e re e e e e areeas 34
3.3.1 Integration & Import of the CSS COMPONENTS........coeeviiiieiicieee e 34
3.3.2 Adjustments for INternet EXPIOrerueieeciiiieecee e 36
3.4 The Base StyleShEET DASE.CSSuueiivuiiii ittt ettt e e et e e e rae e e e eabae e e eareeas 36
3.4.1 Browser Reset - Uniform Starting Point for All Browsers.......cccceccvveevvcieeeeecieeeesenneen. 36
3.4.2 LAyOUL SKEIETON ...oviiiieieeeeee e e s aree s 39
3.4.3 Additional EI@MENTS....c..coiiiiiieeereere et 40
3.5 CSS Adjustments for INternNet EXPIOrer........coocuiiei ettt vee e e 41
3.5.1 Structure- and Layout-Independent BUBFiXescceovciieeiciiieeeccieee e, 43
3.5.2 Structure- and Layout-Dependent BUSFIXESccueveeiiiieeiiiiiee et 48
3.6 Creating the SCre@n LayOUL........eei i ittt e e e e e e e e e e sabae e e enreeas 50
3.6.1 Putting the Layout TOETNErccceiiieeeee e 51
3.7 NaVigation COMPONENTSuvviiiiiiiiiiiiiiiieeee et rrriitrtee e e e s ssssrrrreeeesssssstareeaeeesssssssssseseessssssssssnnes 52
3.7.1 Sliding DOOr NaViZationc..eiieeiiiieeeciiiee et e e ree e e st e e e earee e e e are e e e e abe e e s enreeesenreeas 53
3.7.2 Shiny BUttons NaVigatioN........ccccecieeiieeiiie e seeete e s eestee e ste e e e e st e e eseeesnseeenes 53
3.7.3 Vertical List NaVIgationcceicciieiiieiiiecciee et steeete e e et eeste e sae e sneeesteeereeesnneeenes 54
IR T 0o 10| =1 A BT 7= o PP UPPPPRNE 55
3.8.1 The content_default.css TEMPIALEccvveeeeiiiiieceeeece e e 55
3.9 Layout Adjustments fOr Printingcciccieeieiie ettt te et e e e seeeeaes 59
3.9.1 Printing Preparationttt e e e e 59
3.9.2 Structure of the Print StyleSheets.....ccci i iciiicee e 59
3.9.3 General Print Setup with print_base.Csscceeviiiiiiiiiiieccee e 61

Practice

5

Introduction

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

FIVE RUIES. .. ettt ettt e st e et e st e e s be e e sab e e sabeeeneeesareeennas 64
I Y- o o o] [X 3 Vg Vol [T [T PSR 64
4.1.2 Tips fOr CSS BEZINNEIS ...uviiiiiiiee e e eettee e ettt e e ette e e e ette e e s erae e e e sabae e e eeabaee s ennbaeeeenreeas 65
Recommended Project STIUCTUIEcoccuviii ittt et e e e e e e e saaa e e e s eaaaeaeeas 65
4.2.1 Step 1: Creating Files and FOIAErs.......cccviiiieiiiiiiciie et 65
4.2.2 Step 2: Adjusting the Paths........ooiiiiiiie e 65
4.2.3 STeP 3: LayoUt DeSISN cooviiieiiiieiee 66
BasiC VariatioNS.......cciiiiiiiiiiiiiiiiiii e 67
4.3.1 3-ColUMN LAYOULS ..vtiiiiiiiieeciiee ettt ettt e e et e e e e etee e e s eatae e e e sabae e e eentaeesenbeeeeennneeas 68
4.3.2 2-COlUMN LAYOULS ..veiiiiieiiiieiiiie e ceitee s cettee s st e e et e e e s etee e s s sabae e e e sabee e e senbeeesenbeeeeennseeas 69
4.3.3 Further Alternatives for Sorting the Containers......c.cccccceeivcieeiccciee e, 70
Variable Order and Use of Content CoOIUMNSc.cooiiiiiiiiiiiieiic et 70
R O 1o [T oY= @] [T 4T o LSRR 71
4.4.2 Column Order 1-3-2 and 2-3-1oociiiiieieeieeieee et sttt s 72
4.4.3 Column Order 1-2-3 and 3-2-1 ...cociiiiieiierieeie ettt sttt s 73
4.4.4 Column Order 2-1-3 @nd 3-1-2 ..ccociiiiiiiiiteeiee ettt ettt sttt e s eesaree s 74
R I o T U 1o 1 o o | S PP SPP 76
Y] o1 =10]] - | =TSP 76
4.5.1 Structural CoOmMPOSITIONcciiiiiieieciiie ettt e et e e e tee e e e rree e e e ebee e s eenbaeeeenreeas 77
4.5.2 Adjusting the Subtemplates for Internet EXplorerccccoeecieeeeccieeeccciee e, 80
4.5.3 Examples for SUbteEMPIates USEccocviieiiciiie ettt 81
4.5.4 Alternative Layout CONCEPLvviiiiiiie ettt eree e e evee e e rae e e s e 82
(0o (U0 Y o T B LT = o TSP PPP 82
4.6.1 Example 1 - Column SEParators.....cccccccieeeieciieeeeciiee e ceitee e ssee e e rtee e e etee e s e snreeeesnsneas 83
4.6.2 Example 2 - Column BackgroUNdsc.eeeiiiiiiiieiiiee ettt e et 84
Minimum & Maximum Widths for Flexible Layoutsccccccueeeeeiiieeeciiiee e 84
4.7.1 CSS Support Lacking in Internet Explorer 5.x and 6.0........ccccceeeeeeccciiiieeee e, 85
4.7.2 SOIULION 1: [E EXPrESSIONS c.uuvveeeieiieeeeeiteeeeetteeeestteeeeeteeesssbaeeessabaeeessnseeesennseeessnnseeas 85
4.7.3 Solution 2: External Javascript "minmax.js"ccccoeeiiiiieiiiiiee e 86
Drafting and DEDUGEINGccccuriieeeciiee ettt e ettt e et e e e ettt e e e e ete e e e eeasaeeeseasaeeesannreeaens 87
4.8.1 Automatic Check fOr i@NACKS.CSS......coiutiiiiiiiiiiiieeeeeee ettt 87
4.8.2 Pixel Grid for Checking Positions and GEOMELrYcccccueeeeeciieeecciiee e e 88
s e T = =T oYY o o g o] o = 1 PSP 89
Selected Application EXAMPIEScccviiii ittt e e et e et e e e e e araeas 89

6 | Introduction

4.9.1 Draft Layout "2col_left_SE0"vie e s 92
4.9.2 Layout Draft "3col_fixed _SE0"........eeiiioieee e 94
4.9.3 Layout Draft "FIexible Grids"ccueiiiiiiiieiee e 97

Tools & Tips

70 R Ko To] - T PPV URTOTRPOPPI 100
5.1.1 Dynamically Generated DUMMY TeXt.......cccveeiiriiiiiiiiieeesriiee e criiee e eeieee e ssvee e 100
5.1.2 DreamWEAVET STYIES ...uviiii it e cctee ettt et e e et e e e e eatr e e e e eabee e e e arae e e e nabaeeeenraeas 100

5.2 Tips on Designing FIeXible LayOuULS........ccccuiiiiiiiiie ittt eetee e et e e e evaee e s evaeeeeeanes 101
5.2.1 Dealing with Large EIEMENTS ...c.c.eveiieiiiie ettt 101
5.2.2 SMaAll SCrEENS ...t st 101
5.2.3 Flexible Side COIUMNScccuiiiiiieeeeree e e 102

5.3 KNOWN ProbI@mS ..ottt ettt e 102
5.3.1 Internet-Explorer 5.x: Collapsing Margin on #col3..........ccccoveeeeiiee e, 102
5.3.2 MOZilla & FIFEFOX . .eeiueeiuiiiiieiete ettt 103
o TR T A\ Yo=Y o 1= USRS 103
5.3 PO e s e e s e aeaeaaaaaaans 103

Changelog

T 1 F=T g ¥ T [T 0 PSPPSRt 105
6.1.1 Changes in Version 3.0.4 [27.11.07] ..ottt e e 105
6.1.2 Changes in Version 3.0.3 [18.08.07]ccceeiiieeieiiee ettt e et e e vae e e e 107
6.1.3 Changes in Version 3.0.2 [01.08.07]cceeooiieeeeciiee ettt ettt e e vae e e 107
6.1.4 Changes in Version 3.0.1 [15.07.07] .uuuiiiiiieeiciie ettt e e e e e 109
6.1.5 Changes in Version 3.0 [09.07.07] ..cccccueiiiiiieeeeciiee ettt eeree e eere e e svee e e svae e s e 109

License conditions

7.1 Current and fULUIE rElEASEScccuii ettt st st 112
7.2 OlEI FEICASES ...ttt ettt ettt b e s bt e sttt et e e ke e ebe e sbe e saeesabesabeebeebeennes 112
7.3 General INFOrmMationoouo ittt ettt st 112
7.4 YAML under Creative Commons License (CC-A 2.0)coovueeiiiiveeeeiireeeeeiieeeeeetveeeeeerveeeennns 112
7.5 YAML under Commercial LICENSE (YAML-C) ..cccvvvriieiriieiietieeeeeieeeeeeeireeeceeteeeeeetveeeeeaveeeeenns 113

7 | Introduction

1 Introduction
1.1 Whatis YAML?

YAML was conceived as a basis for developing flexible layouts, with a strong emphasis on meeting
the challenges that result from working with elastic containers and varying units.

The most important features:

o Aflexible, accessible layout concept for designing column-based and grid-based CSS layouts,

e Extensive Cross-browser compatiblity (IE 5.0/Win+) for bullet-proof layout rendering in every
situation,

e The fewest possible restrictions for the designer (fixed or flexible layouts, variable column
widths, etc.),

e User-defined order of content columns in the source code ("any order columns"),

e Stylesheet templates ordered by function to work efficently,

e Column separators and backgrounds all generated without images and continuous down to
the footer,

o flexible grid-system via subtemplates for almost all purposes

This system allows for the rapid development of designs with one to three columns, with fixed or
variable widths. With subtemplates (flexible grids), the column system can be endlessly nested and
expanded. The YAML basis layout can be extended with special containers which help set the layout
width or can create a border around the layout. But why so many containers?

There are two basic methods for creating a layout:
The Bottom-Up Principle

The programmer starts with a blank page. The containers must all be created, positioned,
and styled with CSS. A basic layout does not yet exist. While programming the layout, the
designer must discover all relevant browser bugs and either avoid or hack them.

The Top-Down Principle

Here, the programmer begins with a cross-browser-compatible, functional, modular skeleton
layout, which contains all the most often-used page elements. The web designer then
modifies this basic layout as he wishes and finally optimizes the XHTML and CSS code by
removing unnecessary elements from the layout.

YAML was built for those working according to the second principle, and is best described with the
terms "building block system" or "framework".

http://www.yaml.de/en/documentation/practice/subtemplates.html

8 | Introduction

1.2 What is YAML not?

YAML is not a prepackaged layout. That would contradict the main idea behind the Top-Down
principle. Without optimization for the demands of a particular design, the unnecessary elements
(HTML / CSS) are just extra ballast.

Author’s note: the YAML framework provides a cross-browser compatible basic layout as well as
many helpful CSS components, allowing programmers to devote more time and energy to creative
design.

Nothing is further from my intentions than a translation of the monotony of row houses into the area
of web design by the repeated use of YAML as a finished layout.

Of course it is not forbidden to use YAML and all its components as a “ready to use” layout. Yet, while
adjusting the code to the site’s individual design, you should always keep the code as simple and
clean as possible. Maintenance and bugfixing in the code will be that much easier. Unnecessary
elements in the XHTML source code or the CSS files should thus be removed once the layout is final.

1.3 Advantages of the Framework

YAML is more than just a simple multicolumn layout. It is an entire layout framework, highly flexible,
and tested under real-world conditions. YAML supplies diverse modules and ensures that they work
together flawlessly. Here are a few advantages of the YAML framework:

Browser Compatibility

YAML's components are all fully tested to ensure identical layouts in all browsers. All
necessary hacks are already built in, minimizing the usual layout testing time for the various
programs.

Building Block Principle

The modular design allows particularly efficient layout design using the provided code.

The basic components combine to form a basic but fully functioning layout. Additional
components complete or modify this basis. These CSS components are universally usable:
once written and tested, they can be built in as needed and are available for future projects.

Examples include the simple layout variations with the basemod files as well as the print
stylesheets.

Flexibility in layout design

The framework design provides for much more than just a simple three-column layout. The
flexible basis allows columns to be placed anywhere on the screen. The dynamic character of
the floats allows even one- or two-column layouts in just a few clicks. Column and layout
widths can be defined in any unit of measurement. Units can even be mixed among different

column widths.

9

Introduction

Robust Code

The XHTML and CSS construction of the individual components guarantees almost complete
independence from the structure of the actual content.

The nesting of the main elements of the page in separate DIV containers ensures the correct
positioning of the elements on the screen, irrespective of the later use of any particular
container.

1.3.1 Updates

The YAML Framework is constantly updated. All changes in and additions to each new version are
summarized in the changelog and when necessary, documented more extensively.

Updates of the framework basis are possible anytime, thanks to the organization of the CSS
components and the separation of YAML and user CSS. Relaunches and redesigns are excellent
opportunities for reworking YAML-based websites — or when the extended functionality of a new
YAML version becomes necessary.

Important: YAML has always been built with robust and stable components. However, existing
websites need not be updated with every new version. A perfectly functioning CSS layout does not
need monthly security patches!

An update of the framework basis is recommended when known CSS problems can be solved with a
new YAML version.

1.4 Accessibility & Web standards

The definitions of various levels of accessibility cannot be discussed here, and a thorough treatment
of the advantages of using web standards goes beyond the scope of this site. Here are some
highlights of YAML's usefulness in and practicability in both these areas.

Valid XHTML code and valid stylesheets

A valid skeleton structure is the basis of any website for all target audiences, regardless of
any handicaps. Validity guarantees a high degree of uniformity in the presentation of the
website in various browsers. The individual components of the YAML framework all found on
valid XHTML and CSS code.

Extensive browser support

YAML aims to ensure a uniform presentation of a website in all browsers. The problems of
the sometimes highly variable support of CSS standards, in particular the many CSS bugs in
Internet Explorer, are well known. Still, as Internet Explorer is clearly the worldwide market
leader, it is completely supported. It is simply not sensible to optimize a CSS framework only
for supposedly standard-conform browsers.

Internet Explorer’s current market share is estimated at about 90% worldwide. The
percentage of IE 5.x users has fallen to below 10%. This number is close to the numbers of

10 | Introduction

surfers using alternative browsers like Opera, Mozilla, or Safari. Firefox alone has won more
than 5% of internet users. Support for IE 5.x is thus just as sensible and justified as the
support of modern browsers.

Doing without layout tables

Opposing opinions on layout tables are easily found online. While generally agreed that
nested tables are outdated, user-unfriendly, and difficult to update, controversy still reigns
over the use of tables themselves: if their (non-nested!) application is ever justifiable. The
following presents a few advantages resulting from YAML's non-table layout:

e Free choice in column order

The order of the column containers in the source code is completely independent of
the columns’ position on the screen. The accessibility of the content for text
browsers and screen readers is greatly improved, as they present content linearly.
Search engine placement can also benefit from this flexibility.

¢ Flexibility in layout and printing

Individual columns can be removed from the screen layout via CSS (for one- or two-
column layouts). Specific features like the navigation, sidebars, etc., can be turned
off for printing purposes with the print stylesheet. In addition, column containers are
easily linearized for printing: set to full page width and presented in source order.

e Rendering speed in the browser

Tables are only rendered by the browser when all sections of the table have
completely loaded. When using DIV containers, the browser starts rendering as soon
as the first container has loaded. Pages with table layouts thus make users wait
longer for content. Even today, many users still connect via modem and ISDN. Longer
load times are particularly noticeable and annoying for these readers.

Applying variable size units
A further important milestone on the road to accessible websites is the use of relative units
of measurement (for example in layout widths or font sizes). Accessibility problems occur for
all of us, not just for those with disabilities, when fixed layouts and tiny type make reading
difficult, or when web pages cannot be legibly printed. The flexible setup of all design
elements (column sizes, margins, font sizes) was one of the main principles behind the
development of the YAML framework.

Semantic Code

The semantically correct markup of content contributes to simpler code, easier reading in
alternative browsers, and greater compatibility with future products. The YAML framework
provides the design skeleton for a website, which must function regardless of the nature of
the later content. The involvement of content elements in the layout design, which, when
carefully done, could lead to fewer DIV elements for the basis layout, cannot be anticipated

11

Introduction

by YAML's framer. The optimizing of the XHTML markup and the stylesheets must lie in the
hands of the web designer after the end layout is final.

Skip Link Navigation

In addition to the possibilities of the variable column order, which allows for optimum
linearization of content for text browsers and screen readers, the skip link navigation
improves maneuverability on a web page equipped with links to important content elements
(navigation, content area) — particularly important for screen readers.

The YAML framework provides a flexible skeleton structure, oriented to the demands of barrier-free
web design and exploiting the advantages of web standards. In this context, | am proud to mention
the Redesign 2006 of the website “Einfach fiir Alle” (“Easy for Everyone”). The website is an initiative
of “Aktion Mensch” (“Action Human”) and has promoted barrier-free web design for many years. The
current flexible multiple-column layout from 2006 is based in great part on YAML.

Accessibility and standards could only be treated briefly here; | recommend the following online
articles for those interested in more.

Further Links (in German)
BITV fir Alle
Barrierefrei zum Mithehmen

Retro-Coding: Semantischer Code ist der Anfang von gutem Design

Semantischer Code - Definitionen, Methoden, Zweifel

1.5 The Structure of the Download Package

The following describes the structure of the download package, available directly on the homepage.
The package contains not only the files for the framework itself, but the complete documentation,
several application examples, and a few helpful tools for developing layouts.

1.5.1 The Download Package

File/Folder Description

documentation/ The documentation of the framework in English and in the original German, as
PDF files. This is a complete copy of the online documentation from yaml.de.
Read the documentation carefully and take the bold tips into account when using
the framework.

yaml/ This folder contains all the framework files. These are the finished, out-of-the-box
CSS components as well as templates for the actual layout design. The relevance
of each individual component is thoroughly explained in the documentation. Tips
for using the framework in actual practice are in Chapter 4.

examples/ This folder contains many application examples of the YAML framework with
complete layout examples. The samples are organized according to various
themes. The documentation explains selected examples in great detail.

tools/ This folder contains several tools for developing layouts. The files in this folder are
not necessary for the framework's functionality and need not be placed on the

live server.

http://www.einfach-fuer-alle.de/artikel/efa-relaunch/2006/teil4/
http://www.einfach-fuer-alle.de/
http://www.aktion-mensch.de/
http://www.einfach-fuer-alle.de/artikel/bitvfueralle/
http://www.einfach-fuer-alle.de/artikel/zummitnehmen/
http://www.vorsprungdurchwebstandards.de/theory/retro-coding/
http://www.vorsprungdurchwebstandards.de/theory/semantischer-code/
http://www.yaml.de/en/home.html
http://www.yaml.de/en/documentation/practice/general.html

12 | Introduction

1.5.2 The Framework Files

The YAML framework consists of a predefined XHTML structure as well as a series of CSS files with
various functions. These CSS files are in the yaml folder. In addition to the actual CSS components,

this folder also contains "drafts", which you can use to design your own layout. These templates are

meant to speed your implementation of YAML and simplify the first basic steps.

File/Folder

Description

/yaml/
central_draft.css
markup_draft.html

/yaml/core/
base.css

iehacks.css
print_base.css
slim_base.css
slim_iehacks.css
slim_print_base.css

/yaml/screen/
basemod_draft.css
content_default.css

/yaml/navigation/
images/

nav_shinybuttons.css

nav_slidingdoorl.css
nav_vlist.css

This is the trunk folder of the YAML framework. It contains the file
central_draft.css: a so-called central stylesheet (see section 3.3).

Via this central stylesheet, YAML embeds all the necessary CSS components
in the (X)HTML source code of the website -- with the @ import rule.

The file markup_draft.html is also here, which contains the source code
structure for the YAML framework.

This folder, as the name implies, contains the core CSS components for
YAML. Used together with the predefined XHTML markup and the file
base.css, these files produce a robust three-column basic layout with
header and footer (see Section 3.4: The Base Stylesheet).

The file iehacks.css contains all the CSS adjustments that are necessary for
Internet Explorer (Versionen 5.x - 7.0) and are independent of the layout
and structure (see Section 3.5: CSS Adjustments for Internet Explorer). It is
a core component and required for every YAML-based layout. Both these
basic files together ensure the browser-independent uniform display of the
basic layout.

The third file is print_base.css. This contains basic layout adjustments for
the printed version.

CSS-Adjustments for Internet Explorer

Each of these stylesheets has its own slim version: intended for the live
site, they are optimized for size.

CSS components for the screen design are in this folder.

basemod_draft.css is a template for the screen layout. It can be copied into
different projects and the predefined containers within can be changed or
added to with additional elements. Every YAML-based layout will
incorporate one or more such basic modification (basemod) files via the
central stylesheet (see section 3.6: Creating the Screen Layout as well as
Chapter 4).

The second file in this folder is content_default.css. Often-used content
elements have been predefined here. This file too can be copied into any
project and adjusted accordingly. More information is available in
Section 3.8.

This subfolder contains the components for the navigation. Various list
navigations -- horizontal as well as vertical -- are provided within the YAML
framework.

e nav_shinybuttons (horizontal navigation)

http://www.yaml.de/en/documentation/css-components/base-stylesheet.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/css-components/design-of-the-screen-layout.html
http://www.yaml.de/en/documentation/practice/general.html
http://www.yaml.de/en/documentation/css-components/design-of-the-content.html

13

Introduction
e nav_slidingdoor (horizontal navigation)
e nav_vlist (vertical navigation)
More information is available in Section 3.7.
/yaml/print/

print_003_draft.css
print_020_draft.css
print_023_draft.css
print_100_draft.css
print_103_draft.css
print_120_draft.css
print_123_draft.css
/yaml/patches/
patch_layout_draft.css
patch_nav_vlist.css

This folder contains the CSS files for printing YAML-based layouts.
These files modify the screen layout for paper. More information on print
layouts is in Section 3.9: Adjusting the Layout for Print.

This folder contains the adjustment files for Internet Explorer. The file
patch_layout_draft.css is a draft for such a file.

Such stylesheets contain all the necessary CSS hacks for the layout in
Internet Explorer and are incorporated into the website with a so-called
conditional comment (see Section 3.5: CSS Adjustments for Internet
Explorer).

The second file is patch_nav_vlist.css, which belongs to the navigation file
nav_vlist.css and adjusts those CSS commands for Internet Explorer. More
information is available in Section 3.7.

1.5.3 Included Layout Samples

The layout examples described in the following are intended to provide a glimpse of the many varied

possibilities for the application of the framework. Several of the samples are described more

thoroughly in the documentation, others are meant as inspiration for solving frequently encountered

design problems. The necessary YAML CSS components for each example are inside the given folders

in the subfolder css. The file and folder names are intentionally rather long in order to make clear the

meaning of the individual CSS components.

File/Folder

Description

/examples/01_layout_basics/

3col_standard.html

This folder contains two very simple examples. The sample
3col_standard.html contains the YAML basis layout: a simple,
flexible, 3-column layout with a horizontal navigation.

/examples/02_layouts_2col/

2col_left_13.html
2col_left_31.html
2col_right_13.html
2col_right_31.html

All the important combinations for 2-column YAML layouts are in
this folder.

/examples/03_layouts_3col/

3col_1-2-3.html
3col_1-3-2.html
3col_2-1-3.html
3col_2-3-1.html
3col_3-1-2.html
3col_3-2-1.html

Here are all variations of the 3-column YAML layout. More
information is available in Section 4.4: Variable Column Order.

http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/css-components/layout-for-print-media.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html

14 | Introduction

/examples/04_layouts_styling/

3col_column_backgrounds.html Many examples with some far-reaching graphical layout
3col_column_dividers.html adjustments. Samples of graphic column separators and
3col_faux_columns.html backgrounds as well as graphical borders.

3col_gfxborder.html

/examples/05_layouts_advanced/

2col_left_seo.html Three sample layouts, oriented to common practical
3col_fixed_seo.html requirements. Various functions of YAML are used in combination
flexible_grids.html and explained.

/examples/06_layouts_minmax_for_ie/

minmax_js.html Internet Explorer 5.x and 6.0 need a special script to simulate the

CSS properties min-width and max-width, here presented in an
example. More information is available in Section 4.7: Minimum &
Maximum Widths.

/examples/07_navigation/

menu_shiny_buttons.html Three examples that show the use of the included navigation

menu_sliding_door.html components. More information is available in Section 3.7.

menu_vertical_listnav.html

/examples/08_special_interest/

3col_fullheight.html This layout example demonstrates a special case were the
minimal layout height gets expanded to the full height of the
viewport, even without any content.

1.5.4 Tools for Layout Development

As already mentioned in the introduction, this folder contains a few tools for developing layouts. The
files here are not necessary for YAML's function and are not part of the framework.

File/Folder Description

/tools/dreamweaver/

base_dw?7.css Dreamweaver is a versatile and popular editor for creating web pages. Its WYSIWYG
capabilities for CSS layouts are, however, somewhat restricted. The file in this folder
simplifies the use of Dreamweaver's Design mode with YAML layouts. More
information is available in Section 5.1.

/tools/javascript/

ftod.js This little script creates dummy text on the fly. It is used in the application samples.

minmax.js This script allows the use of the CSS properties min-width and max-width in Internet
Explorer. More information is available in Section 4.7: Minimum & Maximum
Widths.

http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html
http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/tools-tips/general.html
http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html
http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html

15 | Introduction

1.6 Browser Support

o "Windows
o & Internet Explorer 5.01
o & nternet Explorer 5.5
o & Internet Explorer 6.0
o @internet Explorer 7.0

o @& Macintosh 0S

o safari1.0.3+

o ® Camino 0.6+

. .'LH".,Linux
o *Konqueror 3.3+
‘,.H'
o “#Galeon 1.3+
v

o © Epiphany 1.4.8+
o L Lynx (Textbrowser)

e All operating systems
o @ Firefox 1.0+
o Mozilla Suite 1.7.1+
o ’_'-}SeaMonkey 1.0+
o 'E'Netscape 8.0+
o ﬂOpera 6+

The browsers listed here are completely supported: YAML-based layouts will be consistent in all of
them. A plus sign (+) after the version number means that all later versions should work just as well
with YAML.

1.7 IE 5/Mac, Netscape 4 & Co.

Internet Explorer 5 for the Macintosh and Netscape 4 — as well as all other

outdated browsers — have their own special place in YAML's support. gmm,;.m.;
Outdated browsers have great difficulty displaying modern CSS layouts. It e
makes sense to keep this actual CSS completely hidden from these browsers o ('ﬁiﬁﬂ"ﬁc-mm?
— as it would only confuse them — and thus still allow the user access to the ‘ | PR
actual content. . e
o

YAML's CSS building blocks use the rules of @import or @media to deal with
this problem. Internet Explorer 5/Mac, Netscape 4x, and many other outdated browsers are
incapable of interpreting one or the other of these rules, and so are automatically shunted away
from the modern CSS declarations. Users see the complete content: unformatted, but legible.

16

Introduction

Certain versions of Netscape are known to crash at the sight of a mere floated picture. The consistent
use of the shunting principle for aged browsers allows all users access to the content.

In short: outdated browsers are supported by YAML in such a way as to allow users to read the
content without being hampered by incomplete CSS interpretation. Content is visible in the
browser's standard design, similar in appearance to text browser interpretations (i.e. Lynx).

1.8 Thanks

"Yet Another Multicolumn Layout" (YAML) is a one-man project, begun in spring 2005 when | needed
a flexible and all-purpose basic layout for my own small website projects. It began as a hobby project,
as | am a civil engineer in my day job, and am only involved with web design on the side. Jens
Grochtdreis encouraged me to publish Version 1.0 in October 2005, after having already supported
me in developing the framework.

Since then, the project has grown into a comprehensive and stable CSS framework. Public interest
grows with each new version, and more and more comments and emails arrive in my inbox. This
feedback is particularly important and helpful for me as a developer: | would like to thank the users
for all their support.

Many dedicated users' ideas and suggestions have become part of YAML 3. For this feedback and the
invaluable support in many other areas, | would especially like to thank...

e Jens Grochtdreis (for so many tips and discussions and everything else)

e Dieter Bunkerd & Detlef Schabel (for help with TYPO3 and everything else)

e Peter Miller (for countless recommendations for the actual structure of Version 3)
e Ansgar Hein (for the technical suggestions on Version 3)

e Dirk Ginader (for the support in several jQuery ideas)

e Tomas Caspers (for his tips on accessibility)

e Folkert Groeneveld (for the new YAML logo)

e Genevieve Cory (for translating the documentation)

Furthermore | would like to thank Reinhard Hiebl, Alexander Hass, Sven Kausche, and Bernd Fink,
who as beta testers checked the quality of my work. Sven gets an extra thank you for the fresh design
of the layout examples.

http://www.grochtdreis.de/weblog/
http://www.t3net.de/
http://www.little-boxes.de/
http://www.anatom5.de/
http://blog.ginader.de/
http://www.tomascaspers.de/
http://www.groeneveld-design.de/
http://cory.de/

17 | Basics

2 Basics
2.1 A Comprehensive Concept

As the introductory chapter demonstrated, YAML's construction founds on many various

considerations, which are most easily explained using the XHTML source code structure. YAML's high
flexibility requires a certain amount of complexity, but fear ye not. This and the following chapters
explain YAML's basic concept using many examples and source code snippets.

CSS can only be learned and used effectively and precisely when one knows the traps along the way.
As in real life, working with CSS is not always easy peasy. Internet Explorer is outstanding in its field
as far as the number of CSS bugs it contains — creating headaches for both beginners and
professionals. But no pain, no gain — in spite of these bugs, you'll see that even Internet Explorer can
be maneuvered into displaying accurate, modern, accessible CSS layouts.

This documentation will not merely explain YAML's use in standard-conform browsers, but when
necessary includes explanations of Internet Explorer's particular problems and their possible
solutions. That's my idea of a comprehensive concept.

Let us begin...

2.2 The Basics: Floats

If an element (a picture or a table) is declared to be a floated object, it is
released from the normal text flow and the following elements flow around it,
as if it were an obstacle in a stream. This type of positioning only requires the
left-aligning or right-aligning of the element (with float:left; or
float:right;) within the available space. The browser places the rest of
the content around the floated object.

Note: you are advised to read up on the theory of floats in order to better understand their
functioning. | highly recommend the article "Float: The Theory" by Big John of
positioniseverything.net. "Floats: Die Theorie" is the German translation by Andreas Kalt and Jens
Grochtdreis.

Flexible layouts and columns with flexible widths are particularly amenable to floated objects
embedded in the text, as the browser can then optimally place line breaks and content within the
column.

The text flow is stopped with the CSS property clear:value; (Description in German).

Unfortunately, as the W3C has currently defined text flow, it cannot be automatically stopped at the
end of the current paragraph or the next subheadline.

Stopping the text flow thus usually requires additional and optically visible HTML code. The use of
empty p or hr tags is widespread, but this is certainly not practical.

<p style="clear:left;"> </p>

http://www.yaml.de/en/documentation/introduction/general.html
http://www.positioniseverything.net/articles.html
http://css-technik.de/css-examples/219_9/
http://www.andreas-kalt.de/
http://www.grochtdreis.de/
http://www.grochtdreis.de/
http://www.grochtdreis.de/
http://de.selfhtml.org/css/eigenschaften/positionierung.htm#clear

18

Basics
This is particularly disadvantageous for layouts, as those additional code elements are still displayed
by the browser as unintentional vertical space.

The precise use of CSS lets us avoid this problem and makes floated environments practical for layout
design. In Spring 2005, several web designers devoted themselves to this topic and published
interesting ideas.

Two of these markup-free clearing methods are used in YAML. Both methods are explained in the
following section (the right column).

2.3 Markup-Free Clearing

Effective use of floats was always very complicated, as extra code / markup was necessary to end the
flow of text -- often in the form of inline CSS. Floats were thus primarily used for only the simplest
layout tasks, such as arranging images.

The expanded capability of CSS 2 and CSS 2.1 and the current good browser support, the applications
for floats are endless. The key is the markup-free clearing via CSS.

2.3.1 Method 1: Clearfix

The Clearfix Method is from Big John's article "How To Clear Floats Without Structural Markup",
which thoroughly explains Tony Aslett's [csscreator.com] clearing method. A German translation of

this tutorial is available here.

/* Clearfix-Hack */
.clearfix:after {

content: ".";
display: block;
height: 0;

clear: both;
visibility: hidden;
}

.clearfix {display: inline-table;}

/* Hides from IE-mac */

* html .clearfix {height: 1%;}
.clearfix {display: block;}

/* End hide from IE-mac */

IE 7 requires a minor adjustment, which is explained in the article "New clearing method needed for
IE7?"

http://www.positioniseverything.net/easyclearing.html
http://csscreator.com/
http://jassesnee.de/easyclear/
http://www.456bereastreet.com/archive/200603/new_clearing_method_needed_for_ie7/
http://www.456bereastreet.com/archive/200603/new_clearing_method_needed_for_ie7/
http://www.456bereastreet.com/archive/200603/new_clearing_method_needed_for_ie7/

19 | Basics

2.3.2 Method 2: Overflow

A further and most importantly very simple method was pointed out by Paul O'Brien, and is
thoroughly explained in the article Simple Clearing of Floats. The surrounding DIV is given the CSS

property overflow:auto;. This method has proven to very robust, particularly in the nesting of
floats within the content columns.

The value auto, however, can lead to unwanted scrollbars on the edges of the surrounding
container. To avoid this, the YAML framework uses overflow:hidden;, preventing scrollbars.

/* Clearing with overflow */
.floatbox { overflow: hidden; }

More information on this topic in Section 2.6: How Floats Work.

2.3.3 Why Two Clearing Methods?

A fair question, with a clear answer. Although both methods in principle lead to the same result - the
parent element surrounding the float - the way they do it, technically, is different.

Depending upon the final position of the CSS property clear, it may globally affect the entire layout
or only locally, inside a parent container. An exact description is found in Section 2.6: How Floats
Work.

The overflow version is used in locations where the clearfix version would have undesirable effects
(i.e.: global effect of the clear property).

2.4 Structure of the XHTML Source Code

The goal of the YAML framework is to deliver a universally applicable, cross-browser consistent and
fully functional layout with all the necessary XHTML structures, independent of any content. In
particular, page creators have been given the freedom to choose fixed or flexible layouts and column
widths. Furthermore, a certain level of comfort is provided with the predefined commonly needed
elements and the usual design requirements built into the structure. The result is a universal source
code structure, which offers a multitude of easy modifications via CSS without changing the basic
markup. The source code structure is in the download package as an empty HTML file.

/vaml/markup draft.html

http://www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/fileadmin/yaml/markup_draft.html

20 | Basics

2.4.1 Doctype Choice

The doctype XHTML 1.0 Transitional was chosen for the source code structure. You may certainly
change it if you wish: Strict XHTML or perhaps HTML 4.01 are completely compatible with the
framework should your content require them.

Standard Mode

In this mode, the browser interprets (X)HTML as it is defined by the W3C. Mistakes in the
(X)HTML code can cause major errors in presentation. However, this mode offers the
greatest possible assurance that a website will be consistent in all browsers.

Quirks Mode

This mode lets the browser tolerate much more invalid code and will always attempt to
produce a usable web page. This mode is used automatically, when the HTML document
specifies no Doctype, an outdated Doctype — or a misspelled one. Internet Explorer 5.x can
use no other mode than this.

The chosen Doctype's presentation mode is thus crucial for a correct display of the layout --
particularly in Internet Explorer. All the YAML CSS components, including the CSS hacks for Internet
Explorer, are based on the browser's using the standard-conform Standard Mode.

2.4.2 The Structure in Detail

Time to look at the fundaments of the YAML framework. Here is an excerpt from the file
markup_draft.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="de" lang="de">
<head> ... </head>

<body>
<div id="page margins">
<div id="page" class="hold floats">

<div id="header"> ... </div>
<div id="nav"> ...</div>
<!-- begin mainpart -->

<div id="main">

<!-- left column -->

<div id="coll">
<div id="coll content" class="clearfix">
</div>

</div>

<!-- right column -->

<div id="col2">
<div id="col2 content" class="clearfix">

</div>

21

Basics
</div>
<!-- middle column -->
<div id="col3">
<div id="col3 content" class="clearfix">
</div>
<!-- IE Column Clearing -->
<div id="ie clearing">é </div>
</div>
<!-- end mainpart -->
</div>
<!-- footer -->
<div id="footer"> ... </div>
</div>
</div>
</body>
</html>

The outermost DIV container #page margins controls the width of the layout as a whole. It
contains all the following containers, and its parameters determine the maximum and minimum
widths of a flexible layout as well as the width of a fixed design.

In addition, this container together with the container #page can be used to create graphic borders
for the layout - more on that later. Both containers are given the |E-proprietary property hasLayout,
in order to avoid various CSS bugs, such as the Escaping Floats Bug when using horizontal menus on a

float basis. For more information, see Section 3.5: CSS Adjustments for Internet Explorer

Next are the containers for the #header, the main navigation #nav, as well as the main content area
#main with its three columns. The end of the file is: the #footer.

The red section of code labeled IE Column Clearings is one of YAML's special features. The meaning
and function of this container is thoroughly explained in Section 2.7: The Clearing of #col3.

2.4.3 Design Freedom with the Combination Model

The Box Model, which has existed since CSS 1, is clearly intended for use when working with fixed
measurements (i.e. pixels). The total width of a container is determined by the addition of the
individual components of the model: width, padding, and border.

When mixing units of measurement within a container (for example width:25%; padding: 0
10px;), it is no longer possible to calculate the total width of the container in advance. Design
freedom in composing flexible layouts is thus severely reduced.

Internet Explorer has a further problem with flexible column widths. When using Quirks Mode, it
interprets the CSS Box Model incorrectly. IE 6 can be set to present content in a standards-conform
manner with the use of the correct Doctype. However, YAML has always been designed to
completely support version 5.x of Internet Explorer, which only works in quirks mode.

http://www.positioniseverything.net/explorer/escape-floats.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://www.w3.org/TR/REC-CSS2/box.html

22

Basics

In order to yet persuade IE to present the correct width, the Box Model Hack was developed -- along
with countless other variations of the hack. All variations have in common that they exploit the
parser bug to give IE a separate width, taking into account the false calculation, which then results in

a column with the correct width. Unfortunately, this method cannot correct for mixed units of
measurements, because of the problems described above. It is thus a further restriction on design
freedom.

The solution for all these problems lies in YAML's combination model for the basic layout - with two
nested DIV containers in each column.

<!-- begin: #coll - first float column -->

<div id="coll">

<div id="coll content" class="clearfix">
</div>

</div>

The total width of the column is assigned to the outer container #colx. The padding and optional
border go to the inner container colx content, which has no defined width, but only
width:auto.

This means that the total width of the container #colx can always be determined. Any number of
combinations of various units of measurements are possible, which frees the design to flexible
layouts and simultaneously entirely avoids the IE box model bug.

2.5 Column Order in Source Code

Both columns #col1 and #col2 are floats. The third column, #co13, is a static container. The order
in which these three containers appear in the source code is not variable. The float objects (#col1l
and #co12) must always come before the static object (the container #co13).

The CSS declarations of the float columns are in the file yaml/core/base.css:

#coll {
float: left;
width: 200px; /* Standard value */

#col2 {
float: right;
width: 200px; /* Standard value */

The basic layout floats the two column containers #coll and #col2 to the left and right edges,
respectively, leaving #co13 to appear in the middle of this three-column layout.

As you can see in the XHTML structure, the individual columns are not nested in additional

containers (often called wrapper). All three column containers are within #main in the same

http://www.tantek.com/CSS/Examples/boxmodelhack.html
http://www.yaml.de/en/documentation/basics/xhtml-source-code.html

23

Basics

structural level, but both floated columns #coll and #col2 are completely cut out of the normal
element flow. The static container #co13 then takes up the entire available width between them.

CSS must still specify a few more things so that the content in #co13 will not conflict with that in the
two float columns. The float columns are set to a standard width of 200 pixels. A 200 pixel wide outer
margin on #col3 in combination with its width:auto; forces its content into the alley between
the content of #coll and #col2. The CSS declarations described here are in the file:
yaml/core/base.css.

#col3 {
width:auto;
margin-left: 200px; /* Standard value*/
margin-right: 200px; /* Standard value */

Important: the order of containers #coll, #col2, and #col3 should remain unchanged in the
(X)HTML source code. Sort your content into column containers in the desired order. Their sequence
is completely independent of their display on the web page. Details are available in Section 4.4:
Variable Order and Use of Content Columns.

Now we've got the three containers #coll, #col2 and #col3 set up in our source code and
positioned with CSS. Only one question left: why are these three columns not nested inside #main?

The answer is in Section 2.7: The Clearing of Column #col3. Before we get to that, a small detour

along the way to visit float functionality.

2.6 How Floats Work

When using floats, it is imortant to remember that when used in static elements, the CSS property
clear: left | right | both does not only affect its own location within the surrounding
element, but works globally - on all the floated elements on the page that share the same level in the
nesting hierarchy. This is easier demonstrated than explained: please see the file global_clear.html.

global clear.html

Warning: Internet Explorer 5.x and 6.0 will have problems displaying this file. The IE float bugs have
not been fixed here. Please try another browser (Firefox, Safari, Opera ...).

2.6.1 Layout Preparation

First we must ensure that floated objects can be used freely within the columns. For this, the
eventual content must be completely contained within the static DIVs #coll content,
#col2 content and #col3 content.

For this purpose, these three containers are given the CSS class .clearfix. The Clearfix hack
guarantees that all content (static and / or floats) is automatically enclosed. The definition of this
class is found in the file base.css.

http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://www.yaml.de/fileadmin/static_pages/global_clear.html

24

Basics

/* Clearfix Method for clearing the floats */
.clearfix:after {

content: ".";
display: block;
height: 0;

clear: both;
visibility: hidden;
}

/* This declaration is necessary for Safari!! */
.clearfix { display: block; }

Important: although the class .clearfix is only used on block-level elements in the YAML
framework, the Safari browser still needs the explicit declaration of display:block;. Otherwise
the container #col3 content becomes much too narrow. This value is redundant for all other
modern browsers, like Firefox or Opera.

As you can see, even while using the Clearfix Hack we're still using clear:both;. Within the float
columns #col1 and #col2, the clear property only works locally - just how we want it. Within the
static container #col3 however, clear:both works globally and ensures that the container
#col3 content lengthens to reach the lower edge of the longest float column. This behavior is
exactly what the YAML framework requires.

Unfortunately, Internet Explorer up to version 6 cannot deal correctly with the CSS pseudo-class
:after. The clearfix method is not completely ineffective in Internet Explorer. It is used within the
two containers #coll content and #col2 content to enclose the content. A couple of
adjustments are necessary for IE. These hacks are centrally maintained in the file
yaml/core/iehacks.css. For more, see Section 3.5: CSS Adjustments for Internet Explorer.

/* Workaround: Clearfix-Anpassung fiir alle IE-Versionen */
/*

** TR7 - X

)

.clearfix { display: inline-block; }
/*

** TE5.x/Win - x

** TE6 - X

)

* html .clearfix { height: 1%; }
.clearfix { display: block; }

As Internet Explorer cannot interpret the CSS pseudo-class :after, it ignores the property
clear:both; and does not clear globally within #col13. A special DIV container (#ie clearing)
at the end of #col3 is necessary to force IE to clear. A detailed explanation is in the following
Section 2.7: The Clearing of #col3.

Note: a further source of information - especially regarding the technical functioning of floats and in
dealing with various browsers - please see the very thorough article "Grundlagen fiir Spaltenlayouts
mit CSS" by Mathias Schéafer on the SelfHTML-Weblog.

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://aktuell.de.selfhtml.org/weblog/css-spaltenlayout
http://aktuell.de.selfhtml.org/weblog/css-spaltenlayout
http://aktuell.de.selfhtml.org/weblog/css-spaltenlayout
http://aktuell.de.selfhtml.org/weblog/

25 | Basics

2.6.2 Preparing the Content

For the content, yet to come, we need a way to control the text flow within the static container
#col3 without triggering the global behavior of clear:both;. Within the floating columns #col1
and #col2, the use of this property is simple, as the clearing here generally only works locally within
the columns. Within #col13, as discussed, the effect is global and would cause large vertical gaps.
Unless you can prevent it.

The solution is the overflow method, which also makes the encompassing of floats possible. The
overflow method works with the property overflow:hidden, so no conflicts with the clearing of
the columns arise. For the preparation of the content, YAML provides the CSS class . floatbox: its
use is explained in the following two examples.

The definition of the CSS class . floatbox is in the file base.css.

/* Clearing with overflow */
.floatbox { overflow:hidden; }

IE needs some help with the .floatbox too. Again, this is in the global IE adjustment file
iehacks.css (For more see Section 3.5: CSS Adjustments for Internet Explorer).

/* .floatbox adjustment for IE */
* html .floatbox {width:100%;}

The columns can now work with any floated objects. It may be useful to restrict the text flow to a
particular area, perhaps to the next section headline. This can prevent graphics from flowing into a
following but separate section.

For that, we need to nest the flowing content area, again using the CSS class . floatbox (based on
the overflow method). Two examples:

Example 1: a paragraph text should flow around a picture. The surrounding p tag is given the class
.floatbox. The text flow is then restricted to this particular paragraph -- no more HTML code is
necessary to stop the flow.

<p class="floatbox">

This is the text of the paragraph which flows around the picture...
</p>

<p>Here the text flow has ended. This paragraph always begins below the
picture.</p>

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

26

Basics
Example 2: the text of several paragraphs should flow around a picture. The flow should stop before
the next subheading.

The corresponding section is nested in a special DIV container with the class="floatbox". Within
this DIV container, objects can be placed at will with float:1left or float:right:

<h2>Subheading 1</h2>
<div class="floatbox">

<p> ... a paragraph ...</p>

<p> ... a second paragraph ...</p>

<p> ... and another paragraph in the flow of text. </p>
</div>

<h2>Subheading 2</h2>

The flow of text is restricted to the DIV container by the nesting, and needs no extra HTML code with

clear:both; .

2.7 The Clearing of #col3

The previous section explained the global behavior of clear:both; and its effects within the static

container #col3. Though this effect would be counterproductive for the position of content within
#col3, YAML specifically exploits this effect to consistently make #col13 the longest column in the
layout -- independent of the amount of content in the other columns.

The goal of these efforts to use the CSS border property of #col3 to create vertical column
separators (solid, dashed, or dotted lines) or even solid color column backgrounds for the float
columns without using graphics. Because of the global clearing, these will always reach to the
#footer. This profides an alternative method of designing the graphic layout, which is also
extremely easy to edit.

2.7.1 Global Clearing Makes #col3 the Longest Column

How does #col3 become the longest column? In all modern browsers (Mozilla, Firefox, Opera etc.),
this happens without any further ado. As #col3 is a static container, the clearing of
#col3 content via the clearfix class works globally and forces #col3 to stretch to the lowest
end of the longest float column. More on the functioning of the clearfix class in Section 2.6: How
Floats Work.

2.7.2 Special Clearing Solution for Internet Explorer

The global clearing via clearfix does not work in IE, as it does not recognize the CSS pseudo-class
:after, which contains the property clear:both; . Additional HTML must be added to the end of
#col3 to contain it again: this is done with an invisible DIV.

http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html

27

Basics

<!-- IE column clearing -->
<div id="ie clearing"> </div>

Let us take a close look at this invisible DIV. As mentioned, this container is only required for IE. For
modern browsers, it is turned off completely. The necessary declarations are in the file base.css in
the folder yaml/core/-

/* IE-Clearing: ... */
#ie clearing { display: none }

The adjustment in the properties of this particular clearing DIV for IE are in the file iehacks.css in the
yaml/core/ folder:

#ie clearing {
display:block; /* DIV made visible */
\clear:both; /* Normal clearing for IE5.x/Win */

width: 100%; /* IE Clearing with 100% DIV for IE 6 */

font-size:0;

margin: -2px 0 -lem 1lpx; /* IE clearing with extra-large DIV for IE7 */
}

* html { margin: -2px 0 -lem 0; }

/* Avoid horizontal scrollbars for layouts with oversized content in IE7 */
html { margin-right: 1lpx; }

* html { margin-right: 0; } /* IE6 doesn't need it */

#col3 content { margin-bottom:-2px; }
#col3 { position:relative; z-index: -1; }

IE Clearing in Internet Explorer 5.x

display:block turns the DIV on. Then the actual clearing begins: with \clear:both. The leading
backslash exploits the IE 5.x and 6.0 parser bug, which ensures that the property will only be
understood by Internet Explorer 5.x.

Important: this is the standard method for clearing float environments. Unfortunately a particularly
tricky bug turns up in Internet Explorer v5.x to v7, which under certain circumstances can lead to the
collapsing of the left margin of #co13. More information on this in Section 5.3: Known Problems -
Internet Explorer. This bug cannot be fixed in IE 5.x, so the regular clearing is still used for this
browser version.

For Internet Explorer 6 and 7, we use a special clearing method, which prevents the bug from
appearing.

IE Clearing in Internet Explorer 6.0
The clearing solution bases on the fact that within #co13, Internet Explorer will break too-large
elements beneath the float columns. The DIV container #ie clearing is defined with width:

http://www.yaml.de/en/documentation/tools-tips/known-problems.html
http://www.yaml.de/en/documentation/tools-tips/known-problems.html

28

Basics

100% in IE6 to force this. As the float columns will still restrict the space remaining to less than 100
percent, the container must break under the float columns.

IE Clearing in Internet Explorer 7.0

IE7 needs a box with a width of over 100 percent. The container, therefore, also needs an additional
left margin of 1 pixel (margin: -2px 0 -lem 1px). But Internet Explorer 7 has a bug that makes
this overlapping pixel - which has no significance for the layout - to cause horizontal scrollbars when
used with whole-page layouts (body, #page margins and #page at 100% width and no border). To
catch this case, the HTML element html receives a 1 pixel wide margin on the right side.

/* Avoiding horizontal scrollbars for layouts with too-large content in
IE7*/

html {margin-right: lpx}

* html {margin-right: 0}

This trick prevents horizontal scrollbars and the extra 1 pixel wide edge next to the vertical scrollbar
in IE7 is usually not even noticed.

Now one more helpful hint for Internet Explorer 7. The container #col3 has to be assigned the
property position:relative. Without it, Internet Explorer 7 would ignore the container

#ie clearing.

Hiding Clearing Containers in Layouts

The margins in the other directions margin: -2px 0 -lem 1px are only to make the container
optically invisible in all IE versions. To make it definitively invisible, the font size was set at 0. The
height of the container then shrinks to 2 pixels. These last two pixels are then canceled out by a
further negative margin in #col13 content. Now the DIV container is not visible in the layout, and
yet still fulfils its functions.

One last adjustment is necessary. The IE clearing only works as long as the column #col3 is not
given the proprietary property hasLayout. bekommt. Yet exactly that is called for when, for example,
removing the 3 pixel bug (see Section 3.5: CSS Adjustments for Internet Explorer). In this case, the

column dividers cannot be used. Still, the columns must be cleared correctly, in order to place the
footer beneath them. This is done easily by also giving the container #footer in the file base.css the
property clear:both;.

2.7.3 Graphic-Free Column Divider and Column Backgrounds

Done: now we can use the CSS property border of #co13 for vertical column dividers and / or solid
color column backgrounds for #col1l and #col2, which go all the way down to the footer. All
without a single graphic. As an example, we can construct a vertical dotted line:

#col3 {
border-left: 2px #eee dotted;
border-right: 2px #eee dotted;

You want proof that it works? Here you go:

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

29 | Basics

/examples/04 layouts styling/3col column dividers.html

Detailed descriptions of examples of these techniques are in Section 4.2: Designing the Columns.

Note: the use of this technique is only recommended in combination with a column setup with
#col3 in the middle, i.e. 1-3-2 and 2-3-1 or when using two column layouts. More information on
variable column order is found in Section 4.4: Variable Column Order.

When using the column order 1-2-3 / 3-2-1 or 2-1-3 / 3-1-2, this technique is not so useful, as IE will
not stretch #col3 to the height of the longest float column. With these layout variants, please use
the "Faux Columns" technique for defining column backgrounds.

This closes the explanation of the structure of YAML's XHTML source code and the functions of the IE
clearings. The foundation is set. The last bit of the source code structure is the Skip-Links, which are
explained in the following section.

2.8 Skip-Link Navigation

Skip-links improve the usability of a website most of all for those users who are dependent upon a
screen reader. Screen readers linearize the content of a website and read it aloud from beginning to
end. Skip-links should be as close to the beginning of the source code as possible and provide links to
the most important areas within the web page (navigation, content, etc.).

This of course invites the discussion of wheter it is not better to simply place the content of the
website as close to the beginning of the source code as possible -- and place the navigation further
down. This would let the user arrive at the content more quickly, without having to listen to the
navigation links be read aloud on every single page.

But - what if the user does not want to read the content? The user might well merely want to visit a
further subarea of the navigation. It would then be quite frustrating to have to go through the entire
content before getting to the navigation. Clearly, there is no perfect placement of the content in the
source code. More practically, we need to help the users get quickly to the kind of content they
need. Skip-links are a very simple and effective tool.

2.8.1 Skip-Link Navigation in the YAML Framework

The skip-links in YAML's source code are in the DIV container #topnav, before the link to the
imprint. The first link #navigation speeds the user along past all further content in #topnav and
#header directly to the main navigation. The second skip-link #content leads directly to the
beginning of the actual content of the page.

<div id="header">
<div id="topnav">
Skip to the
navigation
Skip to the
content

http://www.yaml.de/fileadmin/examples/04_layouts_styling/3col_column_dividers.html
http://www.yaml.de/en/documentation/css-components/design-of-the-content.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.alistapart.com/articles/fauxcolumns/

30

Basics

</div>
</div>
<div id="nav">

</div>
<div id="col3">
<div id="col3 content" class="clearfix">

</div>

</div>

The anchor for #content must be placed in the appropriate column by the web designer. In this
excerpt of source code, the page content begins in the container #co13. The container #col1 in this
example contains a second navigation level and is skipped. This type of skip-link navigation can also
be found in the YAML documentation itself.

Invisible and Accessible
People using standard browsers generally do not need these navigational aids, so we can hide them
in the normal screen view and in the printed version.

The corresponding CSS class .skip is defined in the CSS file base.css (see Section 3.3: The Base
Stylesheet):

/**

* @section hidden elements

* (@see

*

* Skip-links and hidden content
Y/

/* Classes for invisible elements in the basic layout */
.skip, .hideme, .print {

position: absolute;

top: -1000em;

left: -1000em;

height: 1lpx;

width: lpx;
}

/* Skip-links for making the tab navigation visible */
.skip:focus, .skip:active {

position: static;

top: 07

left: 0;

height: auto;

width: auto;

http://www.yaml.de/en/documentation/css-components/base-stylesheet.html
http://www.yaml.de/en/documentation/css-components/base-stylesheet.html

31

Basics

With that, the skip-links are invisible on the screen and on paper. Using the property
display:none; would be problematic here, as many screen readers would then not read those
links. A very good overview of good ways to present skip-links are in Jim Thatcher's article "Skip
Navigation". When using the tab navigation in the browser, the skip-links should remain visible, so as
not to confuse the user. The class . skip is used to make the two states : focus and :hover visible.

This kind of navigation aid can certainly be expanded with additional links and anchors. That is up to
every individual web designer, but should be well thought out and not overdone.

http://www.jimthatcher.com/skipnav.htm
http://www.jimthatcher.com/skipnav.htm
http://www.jimthatcher.com/skipnav.htm

32 | CSS Components

3 CSS Components
3.1 The CSS Concept

YAML's CSS concept is modular and cascading. The CSS definitions of the basic layout are divided
according to function into several separate CSS components (files):

e Positioning of the main areas of the web page (header, footer, columns)
e Screen layout: design of the main areas

e Formatting of the content

e Design of the navigational elements

e Print templates

The finished layout always comprises several of these components. The separation according to
function makes editing and organizing easier.

Furthermore, regular CSS is strictly separated from those files necessary for Internet Explorer hacks
(bugfixes for CSS bugs). Many of these bugfixes exploit other IE parser bugs, which let IE accept
invalid or incorrect CSS declarations.

Only in rare cases can regular CSS be mixed with the IE bugfixes and still validate. The hacks also
interfere with the legibility of the stylesheets. A summary of these hacks in one single file allows
better comprehension regarding the various IE browser versions, which themselves sometimes
need varying hacks.

3.1.1 Cascading

In addition to the thematic organization of the style listings in various CSS components, YAML uses
the cascading of CSS quite intensively.

Cascading lets the browser decide, which CSS properties are relevant for the display of any particular
element. This cascade is divided into four steps:

e Step 1: origin of the declarations
(browser, author, or user stylesheet).

e Step 2: sorting by origin and weight

e Step 3: sorting by selector specificity

e Step 4: sorting by order of appearance

With the CSS basic components (base.css and iehacks.css), the page creator is presented with a
three-column basic layout as a basis. These stylesheets are integrated into each YAML-based layout
and are never changed.

The basic layout can then be modified by overwriting specific style declarations and expanding other
properties. All the page creator's changes should be made in separate stylesheets: only then can
YAML remain the stable basis at the lowest level.

33 | CSS Components

3.2 Naming Conventions

Certain terms are used again and again within the documentation, as well as in the naming of files
and folders of the framework. A short definition of these:

3.2.1 Basic components (core files)

The core files comprise the core or the foundation of the YAML framework and are in the folder
yaml/core/.

They provide the basic functionality of the framework and are necessary for the cross-browser
uniform layout presentation. They are necessary for every YAML-based layout.

3.2.2 Complementary components

YAML is based on the cascade principle. The actual layout design is created by modifying YAML's
basic layout. In addition, YAML provides several more finished CSS components as well as templates
for often-required elements. These modules are organized by function:

e Screen layout - screen/
e Print layout - print/
¢ Navigation - navigation/

Should these files be used unchanged, they need only be copied directly into the layout from the
folder yaml/. Separate, new stylesheets or modification of these components should be maintained
in a new css folder.

3.2.3 Patches

A patch file contains all the necessary CSS adjustments for Internet Explorer together in one CSS file.
This is integrated into the (X)HTML source code with a conditional comment and ensures a
homogeneous layout.

3.2.4 File templates

YAML offers file templates for oft-required components. These templates have names ending in
* draft.*.

To use them with YAML, copy those you need into your css folder and rename them.

34 | CSS Components

3.3 The Central Stylesheet

YAML's CSS concept is based, as discussed previously, on modules as well as on the cascade principle.
The CSS components are composed according to function (positions of the layout elements,
formatting of content, etc.)

The following diagram shows the functions and meaning of the YAML framework's individual

components.

BASE LAYOUT SCREEN LAYOUT PRINT LAYOUT

1E COMPOMNENT YAML: OPTIONAL COMPONENT

base.css nav_[anything].css
fyamlicaora/ fyamlinavigation/

USER STYLESHEET USER STYLESHEET

basemod.css ' print_[columns].css '
lesslscraan lese/print!
YAML: CORE COMPONENT
USER STYLESHEET
print_base.css

fyamlcore!

content.css ’
lesslscraen)

CENTRAL STYLESHEET

YAML: CORE COMPONENT OPTIDMAL USER STYLES

*1 YAML offars special draft files

iehacks.css
fyaml'cora!

ERNET EXPLORER PATCH STYLESHEET

Every YAML-based layout contains such a central stylesheet, which integrates all the required
components for that layout (basic components, screen layout, navigation, print styles). A complete
layout always comprises several of these components. This separation according to function makes
editing and comprehension easier.

How do we start actually working with YAML?

3.3.1 Integration & Import of the CSS Components

The structure of the central stylesheet -- and thus the use of YAML in your own projects -- is easiest
explained through examples.

Note: copy the folder yam/ from the download package onto your server, on the same level as your
css folder. This separation between your own css files and the files of the framework is necessary to
let you update YAML at any time.

35

CSS Components

The layout is integrated into the (X)HTML source code via a so-called central stylesheet, which is
usually reached with the 1ink element in the HTML head of each web page.

<head>

<link href="css/layout 3col standard.css" rel="stylesheet"
type="text/css"/>

</head>

This central stylesheet contains your layout and should be placed in your css folder. Within this
stylesheet, the other necessary CSS components are integrated with the @ import rule.

/* import core styles | Basis-Stylesheets */
@import url(../yaml/core/base.css);

/* import screen layout | Screen-Layout einbinden */
@import url(../yaml/navigation/nav_shinybuttons.css);
@import url (screen/basemod.css) ;
@import url (screen/content.css);

/* import print layout | Druck-Layout einbinden */
@import url(../yaml/print/print 003 draft.css);

As you can see, the first stylesheet is the most basic of the YAML framework: base.css. It is loaded
directly from the yaml/core/ folder.

In the second step, the screen layout is put together. A stylesheet for the navigation is loaded:
nav_shinybuttons.css. This should remain unchanged, so again, the link is directly to the yaml/ folder.
The screen layout and the content design is up to you: those files should be saved to your own css
folder.

The third and last step connects the print layout, also available as YAML prefabricated components.
In this example, one of these files (print_003_draft.css) is directly linked from the yaml/print/ folder,
without customization.

Important: the basic principle of separation of your custom CSS files from the YAML files has many
advantages, borne out by practical use.

If you want to make changes to any files of the framework or use any of the file templates, copy the
file to your css folder and do not work with the original.

Unchanged original components should be imported directly from the yam/ folder into your layout.
When updating the framework, you need then only overwrite the yaml folder.

36 | CSS Components

3.3.2 Adjustments for Internet Explorer

All modern browsers (Firefox, Safari, Opera, etc.) have their CSS needs met with the central
stylesheet linked from the (X)HTML source code. Only Internet Explorer needs extra CSS adjustments
to be able to display YAML-based CSS layouts. These are integrated into the framework with a so-
called conditional comment.

<head>

<!--[if 1lte IE 7]>

<link href="css/patches/patch 3col standard.css" rel="stylesheet"
type="text/css" />

<![endif]-->

</head>

This is a special comment, which is only understood and interpreted by Internet Explorer. It allows IE
to access a specially created stylesheet which no other browser will see. In the example above, this is
the file patch_3col_standard.css, which contains all CSS modifications for IE.

More on these functions in Section 3.5: CSS Adjustments for Internet Explorer. For all other browsers,

this is a normal HTML comment, and they ignore its content.

3.4 The Base Stylesheet base.css

Important: The stylesheet base.css in the folder yaml/core/ is one of the basic components of the
YAML framework. It sets up the foundation (browser reset, clearing, subtemplates etc.). This
stylesheet is required for every YAML-based layout and should not be changed lightly!

3.4.1 Browser Reset - Uniform Starting Point for All Browsers

YAML's purpose is to guarantee a uniform and cross-browser compatible layout.

A uniform starting point is necessary. This is not a given: every browser sets its own particular
standard formats for displaying unformatted content.

Let us examine the first lines of the base stylesheet base.css:

/**
* @section browser reset
* (@see

*/

* { margin:0; padding:0; }
option {padding-left: 0.4em}

* html body * { overflow:visible }
* html iframe, * html frame { overflow:auto }
* html frameset { overflow:hidden }

html { height: 100%; margin-bottom: 1lpx; }
body {
font-size: 100.01%;

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

37

CSS Components

position: relative;
color: #000;
background: #fff;
text-align: left;

}

fieldset, img { border:0 solid; }

ul, ol, dl { margin: 0 0 lem lem }
11 { margin-left: 1.5em; line-height: 1.5em; }

dt { font-weight: bold; }
dd { margin: 0 0 lem 2em; }

blockquote { margin: 0 0 lem 1.5em; }

Eliminating margins and paddings
Setting * { margin:0; padding:0; } eliminates the inner and outer spacing of all HTML
elements via the asterisk selector. This method takes care of all HTML elements at one go.

For select elements, however, this creates a small problem. The above instruction of course sets
the padding of the option element (the choices in the selectbox) to zero, causing it (in Windows) to
hide the last letter of the content. This problem is solved by setting its standard value explicitly:
option {padding-left: 0.4em}.

Note: the entry can be completed with the CSS property * {border: 0;}. However, this also
removes the preformatting of form elements -- textareas and submit buttons.

In this case, these elements must be formatted with the standard values in the CSS file content.css
(see Section 3.8: Designing the Content), or they will be quite difficult to see on the screen.

The border for the HTML elements fieldset and img are also set to zero (fieldset, img {
border:0 solid; 1}).

Avoiding the italics bug in IE

This bugfix for Internet Explorer 5.x and 6.0 is an exception. While all YAML's further CSS hacks for IE
are collected in special stylesheets, this bugfix must appear before all layout-specific CSS declarations
to work properly.

* html body * { overflow:visible }
* html iframe, * html frame { overflow:auto }
* html frameset { overflow:hidden }

An exact description of this bugfix is in Section 3.5: CSS Adjustments for Internet Explorer.

Jumping centered layouts in Firefox & Safari

In pages that fit entirely within the browser's viewport, Firefox and Safari both hide the vertical
scrollbar. Should the website suddenly become taller than the size of the viewport, vertical scrollbars
appear. This disappearing act is irritating in centered layouts, as the center "jumps" from side to side.

html { height: 100%; margin-bottom: 1lpx; }

http://www.yaml.de/en/documentation/css-components/design-of-the-content.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

38

CSS Components

This declaration forces the vertical scrollbar's appearance and a consistent centering, no matter how
tall the content is.

Font size and rounding errors
The declarationbody { font-size: 100.01% } compensates rounding errors, in particular in
older versions of Opera and Safari. Both would otherwise display fonts that are too small.

Note: in earlier YAML versions, this font size correction was also included for the elements select,
input, and textarea for Safari 1.x. This led to problems in the current Firefox 2.x and will not be
used after YAML version 3.0. Safari 1.x is also seldom used today.

Standard values for lists and quotations

HTML lists as well as elements for designating quotations (blockquote, ol, ul, dl) need line
heights and margins in order to be consistent in all browsers. The browser's own interpretations
were overwritten with the declaration * {margin:0; padding:0;} along with the other browser
resetting options.

ul, ol, dl { margin: 0 0 lem lem }
1i { margin-left: 1.5em; line-height: 1.5em; }

dt { font-weight: bold; }
dd { margin: 0 0 lem 2em; }

blockquote { margin: 0 O lem 1.5em; }

39 | CSS Components

3.4.2 Layout Skeleton

The file base.css provides the absolute basic ' Fpoge_mogns
elements and their positioning on the web page . .
in the three-column layout. Here again all
elements summarized:

e i#page margins and #page Both
containers can be used to embellish the
edges of the layout. A fixed layout width
or the minimum and maximum widths of
a flexible layout are usually set in
#page margins.

e #header Header of the layout, usually
contains a logo as well as the container
#topnav. The latter is positioned
absolutely in the top right corner of the
header by default, and generally contains
required links like the imprint or skip-
links navigation etc.

e #nav Container for main navigation

e #main Main content area for the page.

Contains the three content containers.

o #coll & #coll content - First float container of the main area

o #col2 & #col2 content -Second float container of the main area

o #col3 & #col3 content - Static container of the main section, includes the
container #ie clearing to help IE display correctly.

#footer - Layout footer

The CSS declarations contain no visual design except for the standard widths of the two float
containers right and left.

#header { position:relative; }
#topnav { text-align: right; }

#header #topnav { position:absolute; top: 10px; right: 10px; }

/* (en) Backup for correct positioning */
#header, #nav, #main, #footer { clear:both; }

#coll { float: left; width: 200px; }
#col2 { float:right; width: 200px; }
#col3 { width:auto; margin: 0 200px; }

Increasing the Column Containers’ Stability

#coll content, #col2 content, #col3 content { position: relative; }

The property position:relative; is a preparatory measure to allow the use of absolutely positioned
elements within the columns. Simultaneously, the content in IE will appear without needing to be

highlighted or the window needing to be resized.

40

CSS Components

Note: the YAML framework separates all standard CSS for modern browsers and all zusdtzlich
adjustments for IE are kept separate.

The file iehacks.css contains all the layout-independent adjustments for Internet Explorer. It is the
third core component of the framework in addition to the source code structure and base.css (see
Section 3.5: CSS Adjustments for Internet Explorer).

3.4.3 Additional Elements

Generic CSS Classes for Layout Design
YAML offers with Version 3.0 two mechanisms for modifying the number of columns in the layout: in
addition to the classic method, described in Section 4.4: Variable Column Order, you can now use the

following standard classes to hide and display the columns.

/*k*k

* @section Generic CSS Classes for Layout Design

* @see

*

* .hidecoll -> 2-column-layout (using #col2 and #col3)
* .hidecol2 -> 2-column-layout (using #coll and #col3)
* .hideboth -> single-column-layout (using #col3)

*

~

.hideboth #co0l3 { margin-left: 0; margin-right: 0; }
.hidecoll #col3 { margin-left: 0; margin-right: 200px; }
.hidecol2 #col3 { margin-left: 200px; margin-right: 0; }

.hideboth #coll, .hideboth #col2,
.hidecoll #coll, .hidecol2 #col2 { display:none; }

The relevant class should be assigned either to the body element, the #page margins container, or
the #main container.

These classes must of course be adjusted to the desired column widths of the screen layout. Here
they are meant as orientation tools and have only the standard values.

Note: the use of these classes for modifying the layout is particulary useful in the context of Content
Management Systems. Many CMS do not offer access to the HTML header, so that exchanging
stylesheets for layout modification is difficult to impossible. Alternate versions of the basic layout
often require separate templates.

Manipulating the HTML elements within the body, on the other hand, is generally simple. By using
these generic classes, a template can yet be easily modified.

Skip-Links and Invisible Content

In order to provide the most easily accessible webpages, YAML offers predefined CSS classes in the
base.css to hide content from the visual screen and yet make it available to print versions and
alternative media such as screen readers.

/**
* @section Hidden Elements | Versteckte Elemente
* (@see

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html

41

CSS Components

* (en) skip links and hidden content
* (de) Skip-Links und versteckte Inhalte
)

.skip, .hideme, .print {
position: absolute;
top: -1000em;
left: -1000em;
height: 1lpx;
width: 1lpx;

}

.skip:focus, .skip:active {
position: static;
top: O;
left: 0;
height: auto;
width: auto;

The definition of the CSS class . skip for providing predefined skip-links was explained in Section 2.8:
Skip-Link Navigation.

Two further standard classes were developed to hide content from some media and not from others.
Both classes are fully accessible to screen readers.

The class .hideme hides content from all visual media.

The CSS class .print allows content to be hidden from screens and yet printed onto paper. The
necessary file print_base.css is explained in Section 3.9: The Print Layout.

Further Declarations

The base stylesheet base.css contains still more declarations which are required for the cross-
browser uniform presentation of YAML-based layouts: these are explained fully in the relevant
sections of the documentation.

¢ Methods for Markup-Free Clearing
Contains the clearing mechanisms Clearfix and Overflow, necessary for the correct display of
the float columns (see Section 2.6: How Floats Work)

e Subtemplates
Class definitions for the Subtemplates (see Section 4.5: Subtemplates)

3.5 CSS Adjustments for Internet Explorer

Internet Explorer since Version 5 has integrated broad support for CSS 1 and good support for CSS 2.
Unfortunately the CSS 2 support in particular is riddled with mistakes, which ignored quickly lead to
display errors in CSS layouts.

The source code structure of the YAML basic layout is set up to allow many variations via CSS without

changing the HTML code. To ensure this flexibility, we must iron out the numerous IE CSS bugs.

http://www.yaml.de/en/documentation/basics/skip-links.html
http://www.yaml.de/en/documentation/basics/skip-links.html
http://www.yaml.de/en/documentation/basics/skip-links.html
http://www.yaml.de/en/documentation/css-components/layout-for-print-media.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/practice/subtemplates.html
http://www.yaml.de/en/documentation/basics/xhtml-source-code.html

42

CSS Components

The CSS bugs in IE occur in connection with specific source code constructs relating to combinations
of floating, positioned, and static elements. As the YAML framework's code is fixed and its variations
are known, most of the bugs are predictable and thus manageable.

The bugs are categorized according to their manifestation, and are dealt with separately:
Structure- and layout-independent adjustments

Most of the CSS bugs are easily managed from within the XHTML source code. When such
bugfixes are compatible with all possible modifications and column orders, it qualifies as
structure- or layout-independent.

All these are managed in one stylesheet, iehacks.css in the folder yaml/core/, which should
not be modified.

Layout dependend adjustments

Some CSS bugs are only triggered by particular layouts. These problems cannot be dealt with
by the standard structure, but must be handled individually by the site's designer and are
categorized as structure- or layout-dependent - especially as they are often triggered by the
display of particular content elements.

Every YAML-based layout should include a hack file patch_[layout].css for Internet Explorer,
replacing the placeholder [layout] in the filename to match the relevant central stylesheet. A
template for such a hack stylesheet (patch_layout_draft.css) is in the yaml/patches/ folder.

Structure of the CSS Patch File for Internet Explorer

As described above, every YAML-based layout (or every central stylesheet, see Section 3.3) requires
an IE patch file patch_[layout].css. The structure of such stylesheets is described below, using the
example of the template file patch_layout_draft.css from the yaml/patches/ folder.

/* Layout independent adjustments —--—-----——--- %/
@import url (/yaml/core/iehacks.css) ;

/* Layout dependent adjustments ----—-—-——-——- x/
@media screen, projection

{

/* add your adjustments here | Fligen Sie Ihre Anpassungen hier ein */

As you can see, this file includes both layout-dependent and -independent adjustments. You need
then only integrate one additional CSS file into your layout.

The first section imports the file iehacks.css from the core/ folder of the YAML framework. As
previously mentioned, this file contains all the structure- and layout-independent bugfixes and can
thus be integrated unchanged into every YAML-based layout.

http://www.yaml.de/en/documentation/css-components/the-central-stylesheet.html

43 | CSS Components

The second part contains an empty @media rule. After this you can integrate further IE stylesheets
(the navigation component nav_vlist, for example). Furthermore, this is the place to add the
structure- or layout-dependent bugfixes or bugfixes for the correct display of layout elements.

This IE adjustment stylesheet then takes care of similar issues as the central stylesheet: all CSS hacks
are collected and presented to Internet Explorer.

Integration of the CSS Adjustments in YAML's Layout

Many bugfixes exploit IE's numerous parser bugs - particularly those in older IE versions. The
resulting CSS code is therefore not always valid and should thus only be made accessible to IE. This is
possible with the use of conditional comments within the HTML head <head>. .</head>. This was
already mentioned at the end of Section 3.3: The Central Stylesheet.

<!--[if 1lte IE 7]>
<link href="css/patches/patch _col3 standard.css" rel="stylesheet"
type="text/css" />
<![endif]-->
</head>

The condition 1te IE 7 means "lower than or equal to Internet Explorer Version 7.0". This special
comment is only recognized and interpreted by IE - for all other browsers, it is a normal comment,
and they ignore its contents.

In the following, all layout-relevant IE CSS bugs will be explained and their YAML framework fixes /
workarounds described.

3.5.1 Structure- and Layout-Independent Bugfixes

All structure- and layout-independent bugfixes for IE's CSS bugs are collected in the file iehacks.css in
the yami/core/ folder.

Important: the stylesheet iehacks.css from the yaml/core/ folder is one of the core components of
the YAML framework. It contains all the structure- and layout-independent bugfixes for IE (versions
5.x/Win - 7.0/Win). These corrections are essential for the strength and error-free presentation of
YAML-based layouts in Internet Explorer. This stylesheet is required in every YAML-based layout and
should remain unchanged!

Fundamental CSS Adjustments

In the file base.css, certain declarations are included at the beginning to force Firefox and Safari to
always display vertical scrollbars. In Internet-Explorer, these measures are not required, as the
scrollbars are always displayed.

html { height: auto; margin-bottom:0; }

The next declaration is important for Internet Explorer 7, which has problems when zooming in on
YAML-based layouts.

http://www.yaml.de/en/documentation/css-components/the-central-stylesheet.html#c155

44

CSS Components

body { position:relative }
* html body { position:static}
#main{ position:relative }

The relative positioning of the body solves nearly all IE 7's zoom problems. The container #main also
gets this property. This avoids wrong positioning of columns after resizing the browser window while
using IE-Expressions.

Adjusting Clearing Methods for IE
The CSS adjustments for the clearfix clearing are based on work done by Roger Johansson and are

already compatible with IE 7.

/* Clearfix Adjustments / Anpassungen fur Clearfix-Methode */
.clearfix { display: inline-block }

.clearfix { display: block }

* html .clearfix { height: 1% }

/* Overflow Adjustments / Anpassungen fur Overflow-Methode */
* html .floatbox { width:100% }

The second part deals with the CSS class . floatbox, in which the overflow method is integrated
into YAML. Older IE versions (5.x and 6.0) are given the property hasLayout with the width, causing
them to react properly to this clearing method.

Increasing the Reliability of the Layout

Numerous IE CSS bugs can be resolved by activating the proprietary property hasLayout. For some of
the predefined containers in the source code structure, this bugfix can be used without there being a
real need for it - purely as a precautionary measure.

#page margins, #page, #header, #nav, #main, #footer { zoom:1 }

#page margins, #page { height: 1% }

* html #header, * html #nav, * html #main, * html #footer { width: 100% }
* html #header, * html #nav, * html #main, * html #footer { wid\th: auto }

The two containers which contain the layout (#page margins and #page) are given hasLayout via
the property zoom:1 (IE6 & 7) or height: 1% (IE 5.x). The property width was intentionally left out
here: as the file iehacks.css is the last to be imported into the browser, the designer's intentions
could be unintentionally overwritten.

In the inner containers, the use of height is problematic, in case containers with fixed heights
should be intended. To retain flexibility, the proprietary property zoom s used for IE 6. The use of
zoom:1 has no disturbing side effects. For IE 5.x, the box model bug is exploited, allowing the
unproblematic use of width: 100%. |IE 5.0 does not recognize the property zoom, thus requiring this
additional declaration.

Avoiding an Incomplete Display of Column Content

* html #coll { position:relative }
* html #col2 { position:relative }
* html #col3 { position:relative }

http://www.456bereastreet.com/archive/200603/new_clearing_method_needed_for_ie7/#comment28

45

CSS Components

A further workaround helps to avoid display problems in older versions of IE. IE 5.x and IE 6.0
sometimes display content only partially or not at all. The relative positioning of the column
containers solves this problem.

After these general preventative measures, the following details the handling of the most important
known CSS bugs and their treatment.

Escaping Floats Bug

IE 5.x/Win IE6.0 IE7.0

Bug active Yes Yes Yes

The Escaping Floats Bug causes Internet Explorer to position floats incorrectly within a DIV container.

Two problems appear. First, the size of the surrounding DIV container is incorrectly calculated, and
second, the floats float out of the right-hand side of the container.

Both problems can be solved with the activation of hasLayout - in our example, with height:1%.
This bugfix has already been integrated within the basic layout in the section "Increasing the Stability
of the Layout": further measures are not required.

Guillotine Bug

IE 5.x/Win IE 6.0 IE7.0

Bug active Yes Yes Yes*

The IE/Win Guillotine Bug is triggered by many actions, in particular hover effects on hyperlinks. This

is absolutely the best-known IE bug -- and unfortunately, the most reliable way to avoid it is by:
avoiding hover effects.

/* Guillotine Bug when changing link background color | Guillotine Bug bei
Anderung der Hintergrundfarbe von Links */
a, a:hover { background: transparent; }

IE7 should have repaired this bug, yet reports of collapsing spacing still come in. The bugfix is
therefore also set to be used by IE 7.

Double Float-Margin Bug

IE 5.x/Win IE6.0 IE7.0

Bug active Yes Yes No

Internet Explorer doubles the values of the side margins when positioning floated containers: the
("Doubled Float-Margin Bug") creates layout problems for the variable order of content columns.

Bugfix: Happily, the bug is easy to fix. Both float columns #col1 and #col2 are given the property
display:inline: ignored by all modern browsers, this guarantees that Internet Explorer 5.x and
6.0 display the margins correctly.

* html #coll { display: inline; }
* html #col2 { display: inline; }

http://www.positioniseverything.net/explorer/escape-floats.html
http://www.positioniseverything.net/explorer/guillotine.html
http://positioniseverything.net/explorer/doubled-margin.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html

46

CSS Components

Expanding Boxes in Internet Explorer

IE 5.x/Win IE6.0 IE7.0

Bug active Yes Yes No

Internet Explorer has great difficulty dealing with oversized content within fixed-width boxes. See
Internet Explorer and the Expanding Box Problem.

Bugfix: force a special line break-mode to guarantee a clean display in IE:

* html #coll content { word-wrap: break-word }
* html #col2 content { word-wrap: break-word }
* html #col3 content { word-wrap: break-word }

The property word-wrap: break-word is proprietary to Internet Explorer and incomprehensible
to other browsers. It allows the browser to break text not only between words, but after every letter.
This does reduce readability somewhat when used in a very narrow column, but does provide a
consistent layout. The older 5.x versions of IE unfortunately do not react to this hack.

Oversized content elements can only be dealt with on the layout level: suggestions below.

Internet Explorer and the Italics Problem

IE 5.x/Win IE6.0 IE7.0

Bug active Yes Yes No

The IE Italics-Bug is one of the most difficult to recognize and probably one of the least known CSS
bugs. IE expands the width of a container as soon as content in italics (marked with <i> or)
touch the right edge of the line. The CSS property font-style: italics can also trigger the bug.

The resulting greater width of the parent container creates problems in float-based layouts, as the
container no longer fits in the layout. The problem mostly affects the static column #col3.
Combined with the lack of hasLayout, static containers can even be completely hidden.

Bugfix: the fix for this problem is quite simple: the CSS property overflow:visible; is merely
assigned to all elements of the web page. This property's position in base.css, the first stylesheet
loaded, allows it to be overwritten by the later stylesheets should a layout require it.

* html body * { overflow:visible }
* html iframe, * html frame { overflow:auto }
* html frameset { overflow:hidden }

Although the value visible is the standard for the overflow property, and its explicit statement
superfluous, it nevertheless solves the Italics Problem for IE 5.5+. There is no solution for IE 5.01 --
luckily, this browser is increasingly rare.

In addition there are some further corrections needed in IE 5.x and IE6, so that textarea and input
elements will be displayed correctly. This is done within jehacks.css:

* html textarea {overflow:scroll; overflow-x: hidden}
* html input {overflow: hidden}

http://www.positioniseverything.net/explorer/expandingboxbug.html
http://www.positioniseverything.net/explorer/italicbug-ie.html

47

CSS Components

Disappearing List Background Bug

IE 5.x/Win IE6.0 IE7.0

Bug active Yes Yes No

The IE Disappearing List-Background Bug is triggered when lists are placed within floating DIV

containers. In YAML, this happens primarily within the float columns #col1l and #col12 as well as in
every list within floating content elements. The bug causes background colors or graphics to partially
or completely disappear.

Bugfix: lists are assigned the property position:relative. This generally has no effect on the
layout - except that it reliably eliminates the bug.

* html ul { position: relative }
* html ol { position: relative }
* html dl { position: relative }

List Numbering Bug

IE 5.x/Win IE6.0 IE7.0

Bug aktiv Ja Ja Ja

The IE List Numbering Bug is the last in this list of structure- and layout-independent CSS bugs. It is
triggered when hasLayout is activeted for list items of ordered lists. In this case, all available IE
versions fail to correctly assign numbers to the items of the list.

Bugfix: list items are assigned the property display:1ist-item. This generally has no effect on
the layout - except that it reliably eliminates the bug.

body ol 1i { display:list-item; }

In addition body in the selector raises specifity of the bugfix in the CSS cascade.

http://www.positioniseverything.net/explorer/ie-listbug.html

48 | CSS Components

3.5.2 Structure- and Layout-Dependent Bugfixes

As already mentioned in the introductory Section on IE Adjustments, not all bugfixes can be

implemented independent of the structure and layout of any particular YAML-based site. The
programmer must apply these bugfixes to suit the particular design.

This collection of bugfixes also contains those that correct the display of certain content elements. As
YAML cannot know your content as you do, you must adjust your classes accordingly. All these
bugfixes should be assembled in the IE Adjustment Stylesheet patch_[layout].css.

3-Pixel-Jog Bug

IE 5.x/Win IE 6.0 IE7.0
Bug active Yes Yes No
The problem: as soon as a floating container is placed to
the left of the static container #col13, the IE 3-Pixel-Jog beseitigt. Durch etwas aufwandi
Bug appears. If the content of the static column #co13is & auch im Hintergrundgra

longer than that in the float column, that longer content in '&s zu diesem Beispiel 3: Fil
eispiel 3: Fir
#col3 moves 3 pixels to the left, as in the screenshot. tenanordnung. P _
Farm einer Gra|
sich wp DIV-Con

garantjert, dass

Solution: #col3 must be assigned the CSS property
height: 1%. This hack again works on the basis of
assigning the IE proprietary property hasLayout to the
problematic container.

é;;in {]
However, this hack does not actually force IE to correct
the mysterious jog, but rather moves all elements of container #co13 to the right -- by exactly 3
pixels. This shudder can then be corrected with the help of two negative margins. This correction
must be applied differently, depending on the order of the columns in the source code. Here is an
example of a solution for the basic layout with the float columns each 200 pixels wide:

/* LAYOUT-DEPENDENT ADJUSTMENTS | LAYOUT-ABHANGIGE ANPASSUNGEN —--—--——-——-—-—-

html #col3 { height: 1%; }

html #coll {margin-right: -3px;}

html #col2 {margin-left: -3px;}

html #col3 { margin-left: 197px; margin-right: 197px; }

L I
.

Note: the use of this bugfix for all six possible column orders of the basic layout is demonstrated in
the examples/03_layouts_3col/ folder.

Important: this bugfix collides slightly with the use of graphic-free column separators: they will not
always reach the footer.

In these cases, you must use the "Faux Columns" technique to design column backgrounds with
background images.

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://positioniseverything.net/explorer/threepxtest.html
http://positioniseverything.net/explorer/threepxtest.html
http://www.alistapart.com/articles/fauxcolumns/

49

CSS Components

Handling Oversized Elements

The Internet Explorer 5.x and 6.0 expanding box problem has already been discussed and its solution
for a more flexible text line break integrated in the file iehacks.css. But we still need tools to deal
with oversized block elements (forms, tables, images, etc.).

Within flexible layouts, such elements can cause great problems inside columns with flexible widths,
as |E forcibly widens the corresponding parent container, instead of letting the element itself flow
out into the neighboring columns like all other browsers do.

YAML offers two different methods for solving this problem. Such elements can be put into a DIV
container with the class . floatbox. If the content item is too wide for the parent container, the
overhanging edges are cut off and layout problems avoided.

As an alternative, YAML offers the CSS class .slidebox. It can be assigned directly to the oversized
element, which will then overlap neighboring areas of the layout without extending its parent
container and destroying the layout.

.slidebox {
margin-right: -1000px;
position:relative;
height: 1%

Note: this class should only be applied to static elements: when used on floating elements, the
negative margin creates an undesirable jog.

Disappearing Block Background Bug

The "Disappearing List Background Bug" is not the only bug that leads to incorrect display of
background colors and images. IE 5.x and IE 6.0 have general problems displaying background images
for elements with display:block -- as long as hasLayout is not activated.

The site creator must adjust these content elements specifically. Suitable CSS properties include
width, height, or zoom used with concrete values other than auto.

50 | CSS Components

3.6 Creating the Screen Layout

The real work for the site creator begins with the actual building of the screen layout. The basic CSS
components base.css und iehacks.css provide the consistent basic layout in all browsers, yet does not
supply a unique graphic design.

Your CSS declarations should be kept in a separate stylesheet so as not to interfere with the basic
structure. YAML furnishes suitable structures for you, but their use is not mandatory.

Components of the Screen Layout
The construction of the screen layout can be divided into three relatively independent sections:

1. Design of the layout elements (header, footer, content area)
2. Design of the navigational elements
3. Design of the content

The YAML framework provides file templates and preformatted CSS components to create your own
design in all three areas.

Design of the Layout Elements
The file basemod_draft.css in the yaml/screen/ folder is an empty design template to be used for the
basic layout resulting from the source code structure of the framework.

@media screen, projection

{

/**
* Design of the Basic Layout
*

* @section layout-basics

*/

/* Page margins and background */
body { ... }

/* Layout: Width, Background, Border */

#page margins { ... }

#page{ ... }

/* Design of the Main Layout Elements */

#header { ... }

ftovnav { ... }

fmain { ... }

#footer { ... }

2 */
/**

* Formatting of the Content Area
*

* @section layout-main

*/

#coll { }

51

CSS Components

#coll content { }

#col2 { 1}
#col2 content { }

#col3 { 1}

#col3 content { }

2 * /
/**

* Design of Additional Layout Elements
*

* @section layout-misc

*/

This template contains all the elements of a basic layout. You can copy this template and begin to
desing the various containers as you wish. Additional elements should be integrated at the end of the
file.

Here too, YAML provides examples and sample applications for your use: categorized and organized
according to topic within the examples/ folder of the download package. All the examples use the
same basic screen layout, found in the corresponding css/screen/ folder within each example topic in
the CSS file basemod.css.

These numerous examples demonstrate how the basic YAML layout can be variously modified. This
file is always the starting point for all customizations and adjustments.

Note: for now we will only discuss the basic method for creating a screen layout. Chapter 4 is
dedicated to the thorough presentation of the wide-ranging modifications possible with the
framework and intense analysis of many of the accompanying examples.

Desiging the Navigational Elements and the Content

These two points leave the site creator the most freedom. You can build them all completely from
scratch or use YAML's many CSS components as a starting point for your designs. Due to their range
and importance, each deserves its own section in the documentation: Section 3.7: Navigational

Components and Section 3.8: Designing the Content.

3.6.1 Putting the Layout Together

So far, we have discussed the individual CSS components of the framework as well as the basic
methods for creating a screen layout. The parts must now become a whole: the central stylesheet
comes into play.

In Section 3.3: The Central Stylesheet, the layout's assembly is illustrated with the example of

3col_standard.html from the examples/01_layouts_basics/ folder of the download package.

http://www.yaml.de/en/documentation/practice/general.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/css-components/design-of-the-content.html
http://www.yaml.de/en/documentation/css-components/the-central-stylesheet.html

52

CSS Components

Put all the CSS components of your layout together and link your central stylesheet to your webpage.
Don't forget to set up your IE adjustments stylesheet, so that Internet Explorer has access to the
iehacks.css stylesheet: it is absolutely necessary for the correct display of the layout.

As soon as the screen layout is finished, you can take care of any necessary CSS adjustments for
Internet Explorer in your IE adjustments stylesheet.

3.7 Navigation Components

Of course a layout is never complete without a navigation. As navigational elements can become
quite complex, these are managed in individual CSS files. The layout integrates them via the central
stylesheet.

Within the YAML framework, several preformatted navigation components are available in the
yaml/navigation/ folder.

e Horizontal list navigation "Sliding Door II" — nav_slidingdoor.css
e Horizontal list navigation " Shiny Buttons" — nav_shinybuttons.css
e Vertical list navigation — nav_vlist.css

All listed components support tab navigation. The use of these components -- in particular the
structure of the source code and the classes and IDs -- is explained briefly here. And of course, you
are not at all required to use these particular components in your YAML layout.

53 | CSS Components

3.7.1 Sliding Door Navigation

The first is a tab navigation based on the Sliding Door (and Sliding Door

II) at A-List-Apart. This is a flat horizontal navigation with graphic
hover effects for the individual list elements. The hovers only work on
standard-conform browsers (Firefox, Safari, Opera, and IE 7). The

Button 1

hover effect is not supported by IE 5.x and IE 6.0.

The XHTML markup of both tab navigations is simple and identical.

The menu items are represented as unordered lists. The active menu item is highlighted by assigning
the id="current" to the corresponding list element. The element strong can serve the same
purpose, enclosing the active list element. Both methods are technically equally effective.

An excerpt of source code to demonstrate the markup structure:

<div id="nav main" >

<li id="current">Button 1</1i>
Button 2</1li>
Button 3</1i>
Button 4
Button 5</1i>

</div>

examples/07 navigation/menu slidingdoor.html

3.7.2 Shiny Buttons Navigation

The Shiny Buttons navigation requires few graphical elements. It uses the
very same XHTML markup as the Sliding Door Navigation, explained
above. Switching between both design variants is easily accomplished by
changing out the CSS component in the central stylesheet for the

website.

The menu items are organized as an unordered list. The active menu item is highlighted by assigning
the id current to the corresponding list element. The margin-left: 50px of the ul selector
places the menu at that distance from the left side (details in yaml/navigation/nav_shinybuttons.css).

<div id="nav _main" >

<1i id="current">Button 1</1li>
Button 2</1i>
Button 3
Button 4</1li>
Button 5

</div>

examples/07 navigation/mnu_shinybuttons.html

http://www.alistapart.com/articles/slidingdoors/
http://www.alistapart.com/articles/slidingdoors2/
http://www.alistapart.com/articles/slidingdoors2/
http://www.alistapart.com/articles/slidingdoors2/
http://www.alistapart.com/
http://www.yaml.de/fileadmin/examples/07_navigation/menu_sliding_door.html
http://www.yaml.de/fileadmin/examples/07_navigation/menu_shiny_buttons.html

54 | CSS Components

3.7.3 Vertical List Navigation

This navigation is a vertical list, usable at either a fixed or a

flexible width. Up to four hierarchy levels are possible as well as XHTML Struktur

highlighting of the menu title (using the ID tit1le).

The active menu item can be highlighted with ID active or by Aufbau des Quelltextes

applying strong to the content within the list element. Reihenfolze der Spalten

Subtitles can be easily integrated for the submenus by using the Funktionsweise von floats

span element. In addition, each menu item incorporates a ber Cl
er Clou
hover effect on mouseovers.

Skiplinks
The file nav_vlist.css from the yaml/navigation/ folder provides

the functionality for this component. The corresponding (X)HTML markup is as follows:

<ul id="submenu">
<li id="title">Titel</1li>
Button 1
Button 2
Ebene 3

Button 3.1</1i>
<1li id="active">Button 3.2</1li>
Button 3.3</1li>

Button 4
Button 5

examples/07 navigation/menu vertical listnav.html

Adjustments for Internet Explorer
When using this navigation component, you must import the file patch _nav_vlist.css from the
yaml/patches/ folder into the corresponding IE adjustment stylesheet:

/% Layout=Inckepencent ACJUStHENLS =——ssoscsosooosooosooosms */
@import url (/yaml/core/iehacks.css) ;
@import url(/yaml/patches/patch nav _vlist.css); /* Box Model Corrections */

/* Layout-Dependent Adjustments —-—-———-———————————————————— =)
@media screen

{

}

As the box model is particularly fault in Internet Explorer 5.x (see Section 2.4), this browser requires
special adjustments for this navigation.

http://www.yaml.de/fileadmin/examples/07_navigation/menu_vertical_listnav.html
http://www.yaml.de/en/documentation/basics/xhtml-source-code.html

55 | CSS Components

html #submenu 1i a,

html #submenu 1li strong,

html #submenu 1i span,

html #submenu li#title,

html #submenu li#active { width: 100%; w\idth: 90%; }

* ok k% Kk e
5

html #submenu 1i ul 1i a,

html #submenu 1i ul 1i strong,

html #submenu 1i ul 1i span,

html #submenu 1i ul lif#active { width: 100%; w\idth: 80%; }

* % % X

This code sets the width of the list elements to 100 percent for IE 5.x / Windows, correcting for the
faulty box model interpretation.

3.8 Content Design

YAML is a layout framework and as such provides a structure to display columns correctly in all
browsers, no matter what content is added.

The structural, semantic, and visual composition of the content must be undertaken by the site
designer, yet YAML does provide a starter kit with the file content_default.css in the yaml/screen/
folder. This template sets up basic formatting for standard elements.

You can copy this template for your projects, change and expand it according to your needs, and
integrate it into your YAML-based layout via the central stylesheet.

3.8.1 The content_default.css Template

A website's content also requires careful design. Each browser has its own set of standard predefined
formats, resulting in more or less important differences in their displays.

Setting the basic font size

The first step on the way to a uniform display is the setting of a uniform font size for all standard
elements. The first step in resetting the various browser's individual settings is to define all font sizes
as 16 pixels high via the html * selector. The odd number evens out the rounding errors in a few
older browsers.

Note: the use of html * instead of * ensures that Internet Explorer will still recognize Javascript
expressions for simulating the CSS properties min-width and max-width. See Section 4.7.

/* (en) reset font size for all elements to standard (16 Pixel) */
/* (de) Alle SchriftgroBen auf StandardgréBe (16 Pixel) zurilicksetzen */
html * { font-size: 100.01% }

/* (en) reset monospaced elements to font size 16px in Gecko browsers */
/* (de) SchriftgréBe von monospaced Elemente auf 16 Pixel setzen */
textarea, pre, tt, code {

font-family:"Courier New", Courier, monospace;

}

http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html

56

CSS Components

/* (en) base layout gets standard font size 12px */
/* (de) Basis-Layout erh&dlt Standardschriftgréfe von 12 Pixeln */
body {
font-family: 'Trebuchet MS', Verdana, Helvetica, Arial, sans-serif;
font-size: 75.00%

The second part is a correction for a special characteristic of Gecko based browsers. These browsers
set the standard font size of monospaced elements (textarea, pre, tt, code) to 13px and not to
16px as all other browsers do. By changing the font family from monospace to Courier New or
Courier, this problem can be avoided.

Below that we choose a new, sensible standard font size for the body element. As this property will
be inherited, it will thus be set for all elements within body. For the basis: a sans serif font, 12 pixels
high.

Headlines and Copytext
The next step sets the font sizes, margins, and line heights of the headlines and copytext.

hl,h2,h3,h4,h5,h6 { font-weight:bold; margin: 0 0 0.25em 0; }

hl { font-size: 200% } /* 24px */
h2 { font-size: 166.67% } /* 20px */
h3 { font-size: 150% } /* 18px */
h4 { font-size: 133.33% } /* leéepx */
h5 { font-size: 116.67% } /* 1ldpx */
h6 { font-size: 116.67; font-style:italic } /* 1ldpx */

p { line-height: 1.5em; margin: 0 0 lem 0 }

Important: generally, the font sizes should be given in relative units of measurement to allow all
browsers to zoom the text.

As soon as a value is given in pixels [px], Internet Explorer users (including users of IE 7) cannot use
the text-zoom function of the browser to size the text to their liking.

HTML List Design
The next block deals with the design of HTML lists. The default values correspond to those in
base.css. This redundancy is intentional: changes are easier to make when the original is available.

/* ### lists | Listen ##########44444#### ~/

ul, ol, dl { line-height: 1.5em; margin: 0 0 lem lem }
1i { margin-left: 1.5em; line-height: 1.5em }

dt { font-weight: bold }
dd { margin: 0 0 lem Z2em }

Text Markup

Quotes, text emphasis, abbreviations / acronyms, and preformatted text (or code excerpts) all often
require special text markup. These are included in our general formatting, with the basic properties
of font face, margins, etc.

57

CSS Components

/* ### text formatting | Textauszeichnung ### */

cite, blockquote { font-style:italic }
blockquote { margin: 0 0 lem 1.5em }

strong,b { font-weight: bold }
em,i { font-style:italic }
pre, code { font-family: monospace; font-size: 1l.lem; }

acronym, abbr {
letter-spacing: .07em;
border-bottom: .lem dashed #c00;
cursor: help;

Generic Classes for Positioning and Highlighting Content Elements

/*k*k
* Generic Content Classes
* (en) standard classes for positioning and highlighting
* (de) Standardklassen zur Positionierung und Hervorhebung
*
* @section content-generic-classes
*/
.note {background: #dfd; padding: lem; ...}
.important {background: #ffd; padding: lem; ...}
.warning {background: #fdd; padding: lem; ...}

.float left {float:left; display:inline; margin-right:lem; margin-
bottom:0.15em}

.float right {float:right; display:inline; margin-left:lem; margin-
bottom:0.15em}

.center {text-align:center; margin: 0.5em auto}

Three CSS classes have been created to highlight elements according to their contextual relevance:
general information, an important note, and a warning.

The horizontal alignment of block elements is taken care of by three CSS classes: for left-aligned,
right-aligned, and centered.

Automatic Formatting of Hyperlinks
CSS automatically formats external links. This process is restricted to the actual content area of the
layout, the container #main. Adjust the URL label for your own domain.

/**

* External Links

* (en) classification and formatting of hyperlinks wvia CSS

* (de) Klassifizierung und Gestaltung von Hyperlinks mit CSS
*

* @section content-external-links

* @app-yaml-default disabled

*/

/*

#main a[href”="http://www.my-domain.com"],
#main a[href”*="https://www.my-domain.com"]

58 | CSS Components

padding-left: 12px;
background-image: url ('your image.gif');
background-repeat: no-repeat;
background-position: 0 0.45em;
}
*/

If you use relative paths for internal links, you can even leave out the URL.

#main alhref*="http:"], alhref”="https:"] { ... }

Note: the style declarations for the automatic formatting of external links are commented out in the
template and must be activated for use in practice.

Important: the automatic link formatting requires the browser to support CSS 2.1 pseudoclasses.
Internet Explorer unfortunately does not fulfil this criterium.

Simple Table Design

The next block deals with the display of simple tables. Normal tables are created with an automatic
width, but by using the class . full the table can be forced to fill the entire width. Important to
note: when using this class, additional margins or borders on the sides will automatically create an
oversized element.

The second predefined CSS class, . fixed, allows the creation of tables at a fixed
width: their cells will not expand to encompass oversized content. These
tables are thus easier to incorporate into flexible layouts.

/**

* Tables | Tabellen

* (en) Generic classes for table-width

* (de) Generische Klassen fir die Tabellenbreite
*

* @section content-tables

*/

table { width: auto; border-collapse:collapse; margin-bottom: 0.5em; }
table.full { width: 100% }
table.fixed { table-layout:fixed}

th,td { padding: 0.5em }

thead th { background: #444; color: #fff }
tbody th { background: #ccc; color: #333 }
tbody th.sub { background: #ddd; color: #333 }

The other definitions are self-explanatory. Column and row headlines can be clearly assigned by
using the handy differences between thead and tbody as well as the elements th and th. sub.

Miscellaneous
Here at the end is the definition of a 1 pixel wide HR line -- finishing up the explanations of all
formatting defined in content_default.css.

59 | CSS Components

3.9 Layout Adjustments for Printing

Preparing website content for paper is an important component of any website's design - and an
attractive screen design is no hindrance to a legible and well-organized print version.

The switch between screen and printed page means changing from an interactive to a passive
medium. Paper has a fixed size and proportions. Longer content areas must come to terms with page
breaks - something unfamiliar in the online world. Links are no longer clickable on paper, so if the
corresponding URL is not visible, important information is lost.

3.9.1 Printing Preparation

The headline does not quite capture the point. More accurately, you must merely decide if you want
to print the content of all column containers, of some, or of only one.

The question is: which parts of the layout contain important information and what is only decoration?

The footer information, advertising in the margins, and search forms are all useless in print. The
navigational elements are no longer usable on paper. It is unnecessary to print everything that
appears on the screen, so for a start, the print stylesheets hide the footer and the main navigation.

Choosing the Printable Column Containers

Within the YAML framework, the order and thus the use of the column containers of content,
navigation, or anything else, is variable. The print stylesheets are designed to let you freely choose
any combination of column containers to be printed.

You choose by linking one of the seven print stylesheets from the yaml/print/ folder in the central
stylesheet of your layout.

Print Stylesheet #coll #col2 #col3
print_100_draft.css Yes - -
print_020_draft.css - Yes -
print_003_draft.css - - Yes
print_120_draft.css Yes Yes -
print_023_draft.css - Yes Yes
print_103_draft.css Yes - Yes
print_123_draft.css Yes Yes Yes

3.9.2 Structure of the Print Stylesheets

The structure of these seven print stylesheets is nearly identical. Most of the decisions made for the
printed version of a website are independent of the columns chosen for printing.

All the print stylesheet must also adjust the screen layout for paper, by doing such things as hiding
unnecessary layout elements, displaying URLs, abbreviations, or acronyms, so that very little
information is lost. All these things are independent of your container choices. For purposes of
simplicity, these declarations are all in the file print_base.css in the yaml/core/ folder and imported

at the beginning of each of the seven print stylesheets.

60

CSS Components

/* import print base styles | Basisformatierung fir Drucklayout einbinden
*/

@import url(../core/print_base.css) ;

These general changes are then automatically part of each print stylesheet.

Each individual print stylesheet then only hides the container columns not chosen for printing and
linearizes those that are.

Linearization of the Container Columns

The display of the column containers must be changed for paper. It is not practical to print them on
paper next to each other as they appear on the screen. Depending on the amount of content in the
various columns, unnecessary white space would be printed.

To avoid this, the container columns are linearized, or printed in the row in which they appear in the
source code -- and across the entire page. The following is an excerpt from the print stylesheet
print_103_draft.css. In this one, the column containers #col1 and #col3 are adjusted for the print
version, and #col?2 is turned off.

#coll, #coll content {float:none; width: 100%; margin: 0; padding: O;
border: 0}
#coll content {page-break-after:always}

#col2 {display:none}

#col3, #col3 content {width: 100%; margin:0; padding: 0; border:0}

/* Optional Column Titles | Optionale Spaltenauszeichnung */
/*
#coll content:before {content:" [Left | Middle | Right Column]"}
#col3 content:before {content:" [Linke | Mittlere | Rechte Spalte]"}
*/

In addition to the adjustments of the column widths, #col1 is given the property page-break-
after:always to force a page break when it ends. This page break is intended to delineate the
differences between the columns, especially when their content differs thematically.

Furthermore, the last two lines of code institute an optional naming for the column containers. The
texts within are printed directly before the actual content. This allows you to add more information
to the printed edition.

Note: the optional naming of the columns is predefined in all print stylesheets which print more than
one column, but for safety's sake is commented out.

61 | CSS Components

3.9.3 General Print Setup with print_base.css

With the print stylesheets, you've chosen which content columns should be printed. Most of the
layout changes for printing are made in the CSS component print_base.css from the yaml/core/
folder, integrated in the layout via the other print stylesheet. The content of this component is
explained below.

Important: the stylesheet print_base.css from the yaml/core/ folder is on of the basic components of
the YAML framework. It provides general, layout-independent adjustments of the basic layout for the
print version. This stylesheet is required for every YAML-based layout and should only be changed
when absolutely necessary!

General Layout Changes

The preparations begin with the hiding of containers from the basic layout which are not needed on
paper. Furthermore, the width of the layout is set to 100 percent. Our goal is to take advantage of
the entire sheet of paper.

/* (en) Preparing base layout for print */
/* (de) Basislayout fiir Druck aufbereiten */

body, #page margins, #page, #main {margin:0; padding: 0; border: 0;}
#page margins, #page {width: 100% !important; min-width: inherit; max-
width: none}

#header {height: auto}

#footer {display: none}

/* (en) Hide unnecessary container of the screen layout in print layout */
/* (de) Fir den Druck nicht bendtige Container des Layouts abschalten */

ftopnav {display: none}
#nav {display:none}
#search {display: none}

/* (en) Linearising subtemplates */
/* (de) Linearisierung der Subtemplates */
.c251, .c331, .c381, .c501, .c62l1, .c66l, .c751,
.c25r, .c33r, .c38r, .c50r, .c62r, .c66r, .c75r {
width: 100%; margin:0; float:none; overflow:visible; display:table;

}

.subc, .subcl, .subcr {margin: 0; padding: 0;}

Navigational elements are generally turned off. They are useless on paper. Please note here the
selector #search. In the basic layout, there is no predefined container for the placement of a search
form -- opinions on its optimal location vary too widely. Of course this element exists on most CMS-
managed websites -- this selector was incorporated here, as no search function is useful once
printed. In the last part the subtemplates are linearized by default.

Restructuring of Font Face and Size
Monitors have a much lower pixel resolution (72 to 120 dpi) than the printed page (300 to 1200 dpi).
Small, serif fonts like Times are thus relatively difficult to read on a screen. Sans serif fonts like

Verdana or Arial have clear advantages for use on monitor displays.

62

CSS Components

On paper, especially in longer texts, the opposite is the case: characters with serifs are easier to read.
The print layout uses a serif font for this reason: thanks to CSS inheritance, this is possible with just a
few lines of code.

/* (en) Change font to serif */
/* (de) Zeichensatz auf Serifen umstellen */

body * {font-family: "Times New Roman", Times, serif}
code, pre { font-family:"Courier New", Courier, mono}
body {font-size: 12pt}

Font sizes also vary between optimal for the screen and optimal for thet page. A monitor should be
able to scale the font size, so relative units of measurement like em or percent are used. In printing,
absolute units of measurement are preferred, such as point or pica.

To be easily readable on paper, normal text should not be set smaller than 12pt. This
recommendation is implemented via the body element.

Next, we attempt with the property page-break-after:avoid to avoid page breaks immediately after a
headline. This too will help readability on paper.

/* (en) Avoid page breaks right after headings */
/* (de) Vermeidung von Seitenumbriichen direkt nach einer Uberschrift */

h1l,h2,h3,h4,h5,h6 { page-break-after:avoid; }

Automatic Display of URLs, Acronyms and Abbreviations
As mentioned at the beginning, paper is static. Hyperlinks cannot be clicked, yet the URL should not
be completely lost -- neither should explanatory text for acronyms or abbreviations.

We must ensure that these items appear on the printed page. A CSS2 pseudoclass helps us avoid this
stumbling block.The additional text is printed in parentheses, URLs in brackets, each directly after the
corresponding element.

/* (en) Disable link background graphics */

/* (de) Abschalten evlt. vorhandener Hintergrundgrafiken ... */
abbr[title] :after, acronym[title]:after {
content: ' (' attr(title) ")'

}

/* (en) Enable URL output in print layout */
/* (de) Sichtbare Auszeichnung der URLs von Links */
alhref]:after {

content:" ";

color:#444;

background:inherit;

font-style:italic;

Important: the following passages from the print style sheet require CSS 2.1 pseudoclasses in the
browser. Internet Explorer including Version 7 unfortunately does not meet these requirements.

63

CSS Components

These declarations allow URLs and explanatory texts to print directly after the linked text or marked
abbreviation. Little information from the website is lost in the transition to paper.

Optional Column Labeling

Linearization is practical for printing web pages of several columns. As the left- or right-alignment
disappears, the column containers must appear in the same order in which they appear in the source
code.

That means that in the basic layout (column order 1-3-2), column #co13 -- which usually contains the
main content -- would be printed last. As long as only this column is printed, this is irrelevant.

When several columns are printed, the hierarchy of the columns and their contextual relation to
each other can be lost as a result of the linearization. To improve the user's orientation, optional
headings can be added to each column container for the print layout, naming perhaps the column's
position on screen or labeling its content. This is simple and elegant with the CSS 2 pseudoclass

:before.

/* (en) Preparation for optional column labels */
/* (de) Vorbereitung fiur optionale Spaltenauszeichnung */

#coll_content:before, #colZ_content:before, #col3_content:before {
content: "";
color:#888;
background:inherit;
display:block;
font-weight:bold;
font-size:1.5em;

Should a title be desired, the corresponding container need only be provided with the value for the
content property

64 | Practice

4 Practice

4.1

Five Rules...

The following rules summarize the basic principles defining YAML's development:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

YAML is not a Prefab Layout

YAML bases on web standards and is a versatile tool for creating flexible, accessible CSS
layouts. The best basis for effective work with the framework is a thorough understanding of
YAML's structure and workings. Please take time to read the documentation before you
begin your work.

YAML is Based on the Top-Down Principle

YAML provides a flexible, multi-column layout with all the important standard web page
elements and functional stylesheets for correct display in all browsers, as well as an
optimized layout for the printed version. The user optimizes the finished layout by deleting
unneeded elements from the source code.

CSS Basic Components

Every YAML-based layout needs the three basic CSS components base.css, iehacks.css and
print_base.css from the yaml/core/ folder. The first two files are responsible for the correct
display in all browsers, and the third ensures an optimal layout in print.

Separation of YAML and User CSS

The files in the YAML folder should remain unchanged. Custom stylesheets or changed
versions of YAML's CSS components belong in the user's own separate CSS folder. Only then
can the layout's development basis remain stable over time and bugfixing as well as
maintenance and updates are simplified.

Have Fun with YAML!

4.1.1 Samples Included

In addition to the documentation, the examples folder in the YAML download package contains a

great number of prefabricated sample layouts, which can help you understand how the framework

functions and serve as a starting point for your own projects.

Note: if you are new to YAML, please take the time to read the documentation through to the end.
Chapter 4 contains the complete instructions for practical use, which you should read before you

start.

These examples introduce the basic layout's various modification possibilities, as well as the use of

the various CSS components provided. Section 1.5: The Structure of the Download Package provides

an overview.

http://www.yaml.de/en/documentation/introduction/framework-folder-structure.html

65 | Practice

4.1.2 Tips for CSS Beginners

If you are not yet familiar with CSS, take one of the examples which fits your design requirements
best and play around with the various style definitions of the screen layout. Try out what changes do
what to the layout.

Change margins, font sizes, colors, and container widths. Messing around with them will help you
overcome any awe of CSS and you'll quickly learn exactly what parts of YAML do what -- and how.

4.2 Recommended Project Structure

There are generally no requirements for working with YAML. The project structure recommended
here has proved to be practical, as it makes bugfixing easier when creating a layout and maintenance
easier when a new version of YAML is released.

4.2.1 Step 1: Creating Files and Folders

First, copy the complete yami/ folder onto your server and

Dateien

create another folder on the same hierarchical level called
css for your own unique CSS files.

#74 Example Project v||LnkaI|
XHTML Source Code: copy the XHTML template L o | 4 f Y 9 | =

markup_draft.html from the yaml/ into your project folder

=] Ei\ Site - Example Project (D: \@Projek
and rename the file. -0 css

EEF my_patches
Central Stylesheet: copy the stylesheet template R patch_my_layout, css

central_draft.css into your css folder and rename the file P | my_layout.css
accordingly. Eﬂ yaml
sl my_layout, himl

IE Patches: copy the file template patch layout draft.css
from the yaml/patches/ folder into your css/my_patches/
folder and rename it to match the name of your central stylesheet (so that the relationship is easier

to remember).

The screenshot shows the protostructure of your new project (as seen in a Dreamweaver project
window).

4.2.2 Step 2: Adjusting the Paths

After creating the project structure, you must check all paths for the CSS components. The XHTML
source code must contain the paths to the central stylesheet and to the patch file. The central
stylesheet and patch file themselves must have the correct paths to base.css and iehacks.css. After
these checks, the basic layout is ready to go and the real graphic design can be implemented.

66 | Practice

4.2.3 Step 3: Layout Design
From this point on, you have the choice: you can create M

your own stylesheets for the screen and print layouts as Dateien |

well as for the navigation, or you can start off with YAML's [ﬁ e ,] il
file templates and preformatted CSS components. % | 8 of Y da | =

The folder yaml/screen/ contains the file templates Mot oiliom=ic e e ms (B i o

basemod_draft.css for the page layout and Eh =8
El@ my_patches

. patch_my_layout.css
=3 my_screen

content_default.css to format content.

Copy these templates into your css folder and change them [basemod.css

to suit your wishes. You can work with the navigation o content. css

components and the print stylesheets in the same fashion. - L my_layout.css

a '!,I'EllTll
e tgh] my_layout.html

Note: do not forget to include these additional components in your central stylesheet.

67 | Practice

4.3 Basic Variations

YAML offers you many ways to

customize the basic layout to your
wishes. | will explain these possibilities
in this and the following sections. First
let us examine the (X)HTML source
code structure and the column order
within.

#main

The order of the column containers in

the (X)HTML source code is fixed and #col 1 - Erstes floar-DIV im Queltext
should not be changed: all CSS ket
components, in particular the

#col2 - Zwalte foar-DN irm Susithext

adjustments for Internet Explorer,
Fopd_conient

depend on this structure.
#cold - siafisches DIV

The basic layout can be varied and yet

Wil conbanl

retain its full functionality in all -
browsers -- in particular the IE clearing, -
which ensures that #col13 even in IE

remains the longest column and

permits graphic-free column

separators.

Accessible layouts often demand that the actual content of a page be at the very beginning of the
source code. The idea is to allow text browsers or screen readers easy access to the main subject
matter. Other page elements (sidebars, advertising, etc.) should then follow further down.

Note: for the three-column layouts, Section 4.4 thoroughly describes the means for YAML to fulfil
this concept absolutely. This involves the completely free ordering of the individual columns on the
screen, independent of their position in the source code.

The disadvantage of the independent column order is that four of the six possible variations are
incompatible with the IE clearing, and thus can no longer utilize graphic-free column separators.

http://www.yaml.de/en/documentation/practice/any-order-columns.html

68 | Practice

4.3.1 3-Column Layouts

Header Header

Footer

The basic layout uses the column order 1-3-2. The static column #co13 is surrounded by the two
float containers #col1l and #col2. To switch to column order 2-3-1, you must merely change the
float direction.

#coll {float:right }
#col2 {float:left }

Switching the property allows you to change the layout order of the content in your side columns.
You can use this method to layout a subnavigation on either the left or the right and yet still have it
directly follow on the main navigation in the source code. The subnavigation need merely be placed
in the column #col1 and one of the two column orders to locate it either on the right or the left.

In both cases, #col13 is meant for the main content and is in last place in the source code. This is
certainly not ideal for accessibility purposes, but is easy enough to compensate for via the skip-links
built in to the standard layout.

Header

Footer

That is certainly the most often-used column arrangement -- but it is by no means the only one. An
alternative layout can use one of the side columns for the main content. In this case, navigation,
sidebars, and extras can appear in two narrow columns next to each other.

69

Practice

#coll {width: 60%}
#col2 {width: 20%}
#col3 {margin: 0 60% 0 20%}

o\

This variation also allows the switching of the float direction of the two columns #col1l and #col2,
depending on the location of the main content, left or right. The advantage here is that the static
column #col3 is still between the two side columns and the use of graphic-free column separators
presents no problems.

4.3.2 2-Column Layouts

Header

Footer

Header

Footer

Two columns also allow an optimal placement of content in the source code while yet retaining full
control of its position in the layout. Usually a narrow column will contain the navigation, and a wide
column holds the content.

In our example, the navigation should appear on the left. There are two ways to accomplish this.

These images demonstrate the possibilities for column arrangement. Generally one uses one floating
container (#col11) and one static container (#co13).

All these combinations provide full framework functionality: by this we mean the graphic-free
column separators or backgrounds. Simultaneously, the content can be placed in the source code in a
location optimized for search engines.

70

Practice

The required changes in the basic layout are minimal. The CSS must change the left / right
orientation of the container #col1 and the corresponding margins for #col13. The width of the
column alone determines which will perform which function within the layout.

Note: in the samples of the download package, there are four varieties of two-column layouts, each
realized with containers #col1l and #col13. All the possible combinations for the container order
have been included.

4.3.3 Further Alternatives for Sorting the Containers

But wait, there's more! The previous two-column layouts
merely hid one of the two float columns. Yet a two-column
layout can be built from #col2 and #col3, leaving #coll
available for other purposes.

The standard layout treats the three containers as columns of
a multi-column layout. Of course - only you decide which
container is used for what purpose and in which order.

The example to the right needs an additional container in full
width between the page header and the two-column main
area. In this case, it is simple to place #col1 directly above Footer

the two other columns #col12 and #col3.

#coll {float: none; width: auto; }
#col2 {float: left; width: 25%; }
#col3 {margin-left: 25%; margin-right: 0 }

There are few restrictions in the placement of the column containers on the screen. As the source
code itself remains unchanged, it is quite easy to recognize and work around possible stumbling
blocks in the known IE CSS bugs.

4.4 Variable Order and Use of Content Columns

Section 4.3 demonstrated several fundamental variations on the basic layout. Those all fulfilled the
requirement that YAML's full functionality (including the use of the borders on #col3 to create
column separators or backgrounds, see Section 4.6) remain intact.

This requirement is merely a design criterium and not absolutely necessary when developing a
layout. With regards to a website's accessibility (for example, its display in text browsers), other
criteria can be more important, which might even demand a different order of the column containers
than that of the basic layout.

Many web designers prefer to place the content close to the beginning of the source code, and leave
the less important elements such as the navigation or the sidebars for later. Though the necessity of
this sorting is debatable, the discussion must be carried out elsewhere. Here, we will see how YAML
can also fulfil this demand.

http://www.yaml.de/en/documentation/practice/basic-variations.html
http://www.yaml.de/en/documentation/practice/column-design.html

71

Practice

Note: the following CSS excerpts were taken from the sample layouts in the folder
examples/03_layouts_3col/. You will find the corresponding basemod_xy.css files in the css/screen/
folder, which modifies the column order of the basic screen layout.

Important: the bugfix for the IE 3 Pixel Bug is built into the patch files of this layout sample, as its
basic use can be demonstrated here with several different column orders.

4.4.1 Ordering Columns

The greatest design freedom can be had

when the order of the column
containers in the source code has no
influence on their position on the
screen. In this case, the web designer
can place the content in the source
code according to other demands
(accessibility, search engine
optimization, etc.) and has complete
control over their screen and paper
layout via the stylesheets.

#col2 - 2weatte foar-DIV im Suelthet

As described in Section 4.3, the order of #0012 sonsent
the columns in the source code cannot — .

be changed at will. But it is also
et conment

completely unnecessary.
Wy CAOANY

The position and order of the columns
on the screen is completely controlled

via CSS. You must only insert your

content at that point of the source code

where we'd like it. Afterwards, the |
containers are arranged with CSS, and variously dependent upon the final medium.

For three columns with three various contents, there are exactly six possible combinations for their
placement next to each other on the screen. These combinations are described and their limitations
outlined in the following.

All these combinations use a three-column layout with proportions 25 | 50 | 25 percent. The
positioning examples are in the examples/03_layouts_3col/ folder of the download package.

The most important characteristics have been summarized in this table for each possible column set..
The following legend explains the table's abbreviations:

http://www.yaml.de/en/documentation/practice/basic-variations.html

72 | Practice

Abbreviation Explanation

U-Mix Various units of measurement can be mixed within the layout to set column width:
fixed (pixels), flexible (%), and elastic (EM).

Percent A flexible layout is possible with all column widths set as percents.

Pixels A fixed layout is possible with all column widths set in pixels.

EM An elastic layout is possible with all column widths given in EM / EX values.

3P-Fix The 3 Pixel Bug can be overcome.

SPT The border property of #col3 can be used to represent graphic-free column
separators or backgrounds.

Faux The "Faux Columns" technique for displaying column separators or backgrounds is
applicable.

4.4.2 Column Order 1-3-2 and 2-3-1

Layout U-Mix Percent Pixels EM 3P-Fix SPT Faux
1-3-2 Yes Yes Yes Yes Yes *) Yes Yes
2-3-1 Yes Yes Yes Yes Yes *) Yes Yes

*) The use of graphic-free column separators and the fix for the 3 Pixel Bug via #col3 are mutually
incompatible.

Header Header

Footer

The column order 1-3-2 corresponds exactly to the standard definition, as anchored in the file
base.css (see Section 3.4). | discussed voth variations while explaining the three-column layouts in
Section 4.3.

/* #coll becomes the left column | wird zur linken Spalte */
#coll { width: 25%; }

/* #col2 becomes the right column | wird zur rechten Spalte */
#col2 { width: 25%; }

/* #col3 becomes the middle column | wird zur mittleren Spalte */
#col3 { margin-left: 25%; margin-right: 25%; }

03 layouts 3col/3col 1-3-2.html

To display the reverse order, 2-3-1, we needn't change the order of the columns in the source code --

merely change the float direction of the two columns in a basemod_xy.css file.

http://www.yaml.de/en/documentation/css-components/base-stylesheet.html
http://www.yaml.de/en/documentation/practice/basic-variations.html
http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_1-3-2.html

73

Practice

/* #coll becomes the right column | wird zur rechten Spalte */
#coll { float:right; width: 25%; }

/* #col2 becomes the left column | wird zur linken Spalte */
#col2 { float:left; width: 25%; }

/* #col3 becomes the middle column | wird zur mittleren Spalte */
#col3 { margin-left: 25%; margin-right: 25%; }

That's it. The screen would now show the order 2-3-1.

03 layouts 3col/3col 2-3-1.html

4.4.3 Column Order 1-2-3 and 3-2-1

Layout U-Mix Percent Pixels EM 3P-Fix SPT Faux
1-2-3 - Yes Yes Yes Yes - Yes
3-2-1 - Yes Yes Yes Yes - Yes

Header

Footer

The columns should display in either 1-2-3 from left to right, or in the opposite order, 3-2-1, in which

they appear in the source code.

This presentation order is also simply manipulated. First, the two float columns must be placed next
to each other. For that, both containers need only float in the same direction. So for the order 1-2-3,
#col2 must float:1left, and for the order 3-2-1, the container #coll must float:right.

In the second step, #co13 is shoved to the left or right edge. This is easy enough with a margin on

one side which is exactly as wide as the two columns #col1 and #col2 together.

For the column order 1-2-3, the containers are sorted from left to right.

http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_2-3-1.html

74

Practice

/* #coll becomes the left column | wird zur linken Spalte */
#coll { width: 25%; margin: 0;}

/* #col2 becomes the middle column | wird zur mittleren Spalte */
#col2 { width: 50%; float:left; margin: 0;}

/* #col3 becomes the right column | wird zur rechten Spalte */
#col3 { margin-left: 75%; margin-right: 0%; }

03 layouts 3col/3col 1-2-3.html

For the column order 3-2-1, the containers are sorted from right to left.

/* #coll becomes the right column | wird zur rechten Spalte */
#coll { width: 25%; float:right; margin: 0;}

/* #col2 becomes the middle column | wird zur mittleren Spalte */
#col2 { width: 50%; margin: 0;}

/* #col3 becomes the left column | wird zur linken Spalten */
#col3 { margin-left: 0; margin-right: 75%; }

03 layouts 3col/3col 3-2-1.html

4.4.4 Column Order 2-1-3 and 3-1-2

Layout U-Mix Percent Pixels EM 3P-Fix SPT Faux
2-1-3 - Yes Yes Yes *) not required - Yes
3-1-2 - Yes Yes Yes *) not required - Yes

*) EM based column widths are possible only if the layout width is also defined in EM.

Header Header

Footer Footer

The last two combinations let the first column in the source code order be placed in the middle on

the screen. The previously described column order shows that when #col1l and #col12 have the

same float direction, they appear in the same order onscreen as they do in the source code. We have

to change that now.

http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_1-2-3.html
http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_3-2-1.html

75

Practice

At this point, we need to think outside of the box: other creative people have already wracked their
brains over this issue and have found a wonderfully simple solution: negative margins. Alex Robinson
uses this technique in the "any order columns" section of his article "In search of the One True

Layout". By using negative margins, the two columns can be moved to precisely the position
necessary. The same principle can be used on both YAML's float columns.

The first step ensures that both #col1 and #col2 float in the same direction: both are assigned
float:left. Then needs a margin-left that's exactly as wide as #col2. #coll is then already in its
final position, and #co12 floats right up next to it -- but on its right, not yet on the left.

Now come the negative margins. Our reference point on #co12 is the top left corner. In order to
move it to the left of #col1, it has to be moved to the left by its own width as well as the width of
#coll. The resulting margin totals up to -75 percent. The final step moves #co13 to the right side by
adding float:right property.

As all columns are floats now, we have to force #main to contain its floating children. This is done by
adding float:1left property.

/* containing floats in #main */
#main { width:100%; float:left; }

/* #coll becomes middle column */
#coll { width: 50%; float:left; margin-left: 25%; }

/* #col2 becomes left column */
#col2 { width: 25%; float:left; margin-left: -75%; }

/* #col3 becomes right column */
#col3 {
margin-left: -5px;
margin-right: 0;
float:right; width: 25%;
}

In this column order, the IE Doubled Float Margin Bug (see Section 2.13.5) would usually strike -

literally doubling all margins and absolutely destroying this layout. But have no fear: the
corresponding bugfix is already integrated in the file iehacks.css and incorporated into every YAML-
based layout.

03 layouts 3col/3col 2-1-3.html

The procecure for the column order 3-1-2 is quite similar: just the float directions for #col1l and
#col2 are switched out, the margins added together for the right side, and a different column gets
the negative margin, as IE fails to comprehend a negative margin-right for #co12.

So #coll must float:right, the same direction as #col2. Then #col1l is moved to the middle
with a negative margin of the sum of its width and the width of #co12 (margin-left: -75%). To ensure
that older versions of IE can still play along nicely, the margins for both sides are explicitly assigned
for each column. Now that #col1 is in the middle of the page, #col12 floats up to the right. Last,
#col3 lands on the left side and again, #main is forced to contain its floating children.

http://www.fu2k.org/alex/css/
http://positioniseverything.net/articles/onetruelayout/
http://positioniseverything.net/articles/onetruelayout/
http://positioniseverything.net/articles/onetruelayout/
http://www.yaml.de/de/dokumentation/css-struktur/anpassungen-fuer-den-ie.html
http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_2-1-3.html

76

Practice

/* containing floats in #main */
#fmain { width: 100%; float:left; }

/* #coll becomes middel column */
#coll { width: 50%; float:right; margin-left: -75%; margin-right:25%;}

/* #coll becomes right column */
#col2 { width: 25%; float:right; margin-right: 0%;}

/* #col3 becomes left column */
#col3 {
margin-left: 0;
margin-right: -5px;
float:left; width: 25%;

03 layouts 3col/3col 3-1-2.html

Column arrangement with negative margins works in all modern browsers. Alex Robinson points out
that Netscape 6 & 7 and the older Opera 6 still have problems, but the current browser version
Netscape 8.x did fine in our testing, and Opera 6 is, shall we say, antiquated.

4.4.5 The Upshot

YAML allows you to arrange your columns on the screen in any order, completely independent of
their position in the source code.You alone decide which column will contain which content,
navigation, or sidebar. The advantages and disadvantages of the various placement methods are
easily compared with their relative usefulness.

Note: YAML with its print stylesheets offers an optional heading for the column containers for the
print version. This can be useful when the linearized presentation is set to print the containers in a
different order than they appear on the screen.

4.5 Subtemplates

The website is of course not finished once the basic layout is done: the content itself has yet to be
arranged. Many pages require several short content sections next to each other - though we are not
speaking of tabular data. And of course a traditional column layout does not always meet the
demands of today's design: the YAML homepage itself (www.yaml.de) exemplifies a much freer use
of content blocks.

For these purposes, YAML offers subtemplates. These are XHTML code snippets which allow a
horizontal division of content within various containers. These components are based on nested
floating DIV boxes.

Note: all the required CSS definitions for the subtemplates are found in the file base.css. The
adjustments for the correct automatic clearing in Internet Explorer are in the file iehacks.css.
Subtemplates are integrated in the basic components of the framework and are available to all YAML

layout variations.

http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_3-1-2.html
http://positioniseverything.net/articles/onetruelayout/anyorder
http://www.yaml.de/

77

Practice

Subtemplates can also be nested within each other. This allows you to vary the column divisions in
countless various ways.

4.5.1 Structural Composition

The structure of such a code snippet is easy to understand with an example. Below is the required
XHTML code for a 50/50 split - a division into left and right blocks of equal size.

<!-- Subtemplate: 2 columns with 50/50 division -->
<div class="subcolumns">
<div class="c501">
<div class="subcl">
<!-- left content block -->
</div>
</div>
<div class="c50r">
<div class="subcr">
<!-- right content block -->
</div>
</div>
</div>

You get the general idea: let's now take a look at the details.

The Container
A subtemplate always begins with a DIV container of the .subcolumns class, which encompasses
the smaller individual containers that actually divide the space.

<!-- Subtemplate: 2 columns with 50/50 division -->
<div class="subcolumns">

</div>

The file base.css assigns the class .subcolumns the following CSS properties, which should not be
changed.

/**
* @section subtemplates
* (@see

*/

.subcolumns { width: 100%; overflow: hidden; }
.subcolumns_oldgecko { width: 100%; float:left; }

The container width is set as 100 percent by default, so that it completely fills the available horizontal
space. Simultaneously, this definition activates the property hasLayout in Internet Explorer, forcing it
to encompass the content within. All other browsers need the CSS property overflow:hidden (see
Section 2.3: Markup-Free Clearing).

http://www.yaml.de/en/documentation/basics/general.html

78

Practice

Note: Netscape browsers up to and including Version 7.1 as well as old Gecko browsers (up to about
July 2004) have problems with the display of the subtemplates due to a bug in connection with
overflow:hidden. Netscape's version 7.2 and up display subtemplates correctly.

If support of these older Gecko-based browsers is required, you can use the class
.subtemplates oldgecko instead. Please note the information in Section 5.3 on the Netscape
overflow-Bug.

Dividing Space with DIV Blocks

DIV blocks with the CSS classes c501 and c50r divide the horizontal space. The "c¢" stands for
column, the number "50" for 50 percent of the available width and the letters "I" and "r" for left- and
right-floating blocks.

<!-- Subtemplate: 2 columns with 50/50 division -->
<div class="subcolumns">

<div class="c501">

</div>

<div class="c50r">

</div>
</div>

In general, two blocks (a left and a right) form a pair. The sum of the widths of all blocks within a
subtemplate should always equal 100%. The following division ratios are provided for as part of
YAML's predefined CSS classes:

e 50% /50% Division (classes ¢c501 and c50r)

e 33% /66% Division (classes c331 and c66r as well as c661 and c33r)
e 25% / 75% Division (classes c251 and c75r as well as c751 and c25r)
e Golden Ratio (classes c381 and c62r as well as c621 and c38r)

The class definitions are in the file base.css.

.c501, .c251, .c331, .c381, .c66l, .c751, .c621 { float: left; }
.c50r, .c25r, .c33r, .c38r, .c6o6r, .c75r, .c62r { float: right; margin-
left: -5px; }

.c251, .c25r
.c331, .c33r
.c501, .c50r
.cb661l, .c6b6r
@751, .@75%
.c381, .c38r
.c621, .c62r

width: 25%; }

width: 33.333%; }

width: 50%; }

width: 66.666%; }

width: 75%; }

width: 38.2%; } /* Golden Ratio */
width: 61.8%; } /* Golden Ratio */

e i e e

The real width of a floating container is calculated by the browser just before it is rendered. The
percentage values' conversion into pixels requires rounding. and Internet Explorer is sometimes less
accurate than other browsers relating to the total width of all DIV blocks within a subtemplate.

The result is that the sum of the individual containers is greater than the width of the parent
container .subcolumns, and the floating DIV boxes are displaced. To avoid this effect, all right-

http://www.yaml.de/en/documentation/tools-tips/known-problems.html

79 | Practice

floating DIV blocks are assigned a margin-left: -5px. This allows any right-floating container to
overlap an element to its left by a maximum of five pixels: an elegant compensation for the rounding
errors.

Important: the compensation for these rounding errors demands exactly one right-floating container
within each subtemplate.

These predefined CSS classes allow the following arrangements, even without nesting the

m
n
n
_
n

subtemplates:

IIIIEHIIIIIIIIHHIIIIIIIIEHIIII

These blocks can be nested deep within each other simply by inserting further subtemplates. This
allows nearly absolute freedom in the division of your columns.

The Content Containers

As in the layout columns of the YAML framework, the outer containers (here the DIV blocks c501
and c50r) set up the division of space, while the inner containers subc, subcl and subcr maintain
the padding, margin, and border around the content.

<div class="subcolumns">
<div class="c501">
<div class="subcl">
<!-- left content block -->
</div>
</div>
<div class="c50r">
<div class="subcr">
<!-- right content block -->
</div>
</div>
</div>

80

Practice

.subc { padding: 0 O0.5em 0 0.5em; }
.subcl { padding: 0 lem 0 0; }
.subcr { padding: 0 0 0 lem; }

The final letters "/" and "r" stand for content blocks on the left or right side of the subtemplate. This
influences the padding). For content blocks which are not on the side, such as the middle block of a
33/33/33 division, we have the container subc, which has padding on both sides.

The sum of the assigned paddings must always be identical for each block to guarantee that each
column has exactly the same width.

The containers subcl and subcr on the sides are each assigned a padding of 1 em on the inner side.
The container subc needs padding on both sides, which must total 1 em: it is assigned left and right
paddings of 0.5 em each.

4.5.2 Adjusting the Subtemplates for Internet Explorer

The subtemplates use the CSS property float rather extensively. This means that we must deal with
the corresponding IE bugs such as the Escaping Floats Bug and the Doubled-Float-Margin Bug -- and
of course the Expanding Box Problem turns up when we work with flexible container widths.

Analogous to the bugfixes for the YAML basic layout, the bugfixes are also applied to the subcolumns.

* hmtl .c501, * hmtl .c251, * hmtl .c331, * hmtl .c381, * hmtl .c661,

* hmtl .c751, * hmtl .c621, * hmtl .c50r, * hmtl .c25r, * hmtl .c33r,

* hmtl .c38r, * hmtl .c66r, * hmtl .c75r, * hmtl .c62r {
display:inline;

* html .subcolumns .subc,
* html .subcolumns .subcl,
* html .subcolumns .subcr { word-wrap: break-word; overflow:hidden; }

The Escaping Floats Bug is taken care of when the container .subcolumns is provided with
hasLayout via width:100%. The property display:inline defuses the Doubled-Float-Margin Bug,
and word-wrap:break-word and overflow:hidden ensure that even the older IE generations (IE
5.x and IE 6) cut off oversized content elements and do not let them destroy the layout.

Note: the file jehacks.css sets the property word-wrap back to the standard value of word-
wrap:normal for printing.

81 | Practice

4.5.3 Examples for Subtemplates Use

The following examples show subtemplates used directly as well as nested. Read the source code of

the examples in the online documentation carefully to understand exactly what's happening.

50 / 50 Split

Block 1: Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla dapibus mattis
tellus. Ut dui nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit. Nunc ac urna.
Nullam sed quam ac turpis porta porta. Aliguam
ut sem ut leo mattis ultricies. Aliqguam aliquam
ligula ut purus. ..

33 /33 /33 Split

Block 2: Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla dapibus mattis
tellus. Ut dui nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit. Nunc ac urna.
Nullam sed quam ac turpis porta porta. Aliquam
ut sem ut leo mattis ultricies. Aliqguam aliquam
ligula ut purus. ...

Block 1: Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla
dapibus mattis tellus. Ut dui
nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit.
Nunc ac urna. ...

Block 2: Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla
dapibus mattis tellus. Ut dui
nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit.
Nunc ac urna. ...

Block 3: Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla
dapibus mattis tellus. Ut dui
nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit.
Nunc ac urna. ...

Divisions According to the Golden Ratio

Block 1: Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. In ac lectus. Aenean tincidunt metus nec
orci. Nulla dapibus mattis tellus. Ut dui nunc, ultrices ut,
egestas vitae, feugiat ac, tortor. Nullam velit. Nunc ac
urna. Nullam sed quam ac turpis porta porta. Aliquam ut
sem ut leo mattis ultricies. Aliguam aliquam ligula ut

purus. ...

Endless Variety with Nesting

Block 2: Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. In ac lectus.
Aenean tincidunt metus nec orci. Nulla
dapibus mattis tellus. Ut dui nunc,
ultrices ut, egestas vitae, feugiat ac,
tortor. Nullam velit. Nunc ac ...

Subtemplates can be endlessly nested within each other, allowing you countless various column

divisions. The only requirement is that within each nesting level, the sum of the blocks' width must

always be 100%. The following example shows such a nesting. Within the left 50 percent block are

two further 50 percent blocks. The right 50 percent block is further divided according to the Golden

Ratio.

Block 1: Lorem ipsum Block 2: Lorem ipsum

dolor sit amet, dolor sit amet,
consectetuer consectetuer
adipiscing elit. In ac adipiscing elit. In ac
lectus. Aenean lectus. Aenean
tincidunt metus nec tincidunt metus nec
orci. Nulla dapibus orci.

mattis tellus.

Block 3: Lorem Block 4: Lorem ipsum dolor
ipsum dolor sit sit amet, consectetuer

amet, adipiscing elit. In ac lectus.
consectetuer Aenean tincidunt metus nec
adipiscing elit. In orci. Nulla dapibus mattis
ac lectus ... tellus. ...

http://www.yaml.de/en/documentation/practice/subtemplates.html

82 | Practice

4.5.4 Alternative Layout Concept

The classic several-column layout with header and footer strongly resembles its ancestor, the table
layout. The column concept is tried and true, offering high flexibility within the YAML framework.

Yet the concept has its limits, and the global division of the page into two or three columns along
with the header and footer is not always practical. YAML Version 2.4 introduced the subtemplates to
expand the possibilities for the content area. Yet they can do so much more: subtemplate use is not
limited to the content columns.

Rather, they are an extremely versatile tool for a much freer layout development -- in addition to the
classic several-column layout. The nesting of subtemplates allows nearly endless combinations of
column widths on a page.

4.6 Column Design

In Section 2.7 we discussed the particulars of the special clearing at the end of the static column
#col3.

Of course this does not deliver our ideal genuine equal-length columns, but YAML's method does
bring us very close. How close exactly? Let's examine the following two examples.

Important: The column #col3 nearly always needs the value width:auto;! Otherwise Internet
Explorer will apply the attribute hasLayout = true (see the article: on having Layout), destroying our
careful IE clearing at the end of #co13 by encompassing it.

Background: the static column #co13 is the bearer of the column separators. Without the clearing,
the column and thus the lines would not always reach all the way down to the footer.

http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://www.satzansatz.de/cssd/onhavinglayout.html

83 | Practice

4.6.1 Example 1 - Column Separators

A common design element is vertical separation

lines between the individual content columns. The Example | Belspid "3col_ colirm_dviders""
Faux Columns technique (with background images)
is often used to ensure that these lines are always
the same length, independent of how full each
column container is

When using the column order 1-3-2 and 2-3-1 (see
Section 4.4), YAML can create lines without using
any background images at all. Instead, we use the

‘i Aokl

CSS border property of the static column #col3.
This is possible in these column orders because #col3 is always the longest.

Below is an example of a two-pixel wide dotted line as a column separator for a three-column layout:

#col3 {
border-left: 2px #ddd dotted;
border-right: 2px #ddd dotted;
}

04 layouts styling/3col column dividers.html

http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.yaml.de/fileadmin/examples/04_layouts_styling/3col_column_dividers.html

84 | Practice

4.6.2 Example 2 - Column Backgrounds

A further effective use of the CSS border
property of the static #col13 is to color the side

Example | Bebsplel "Jool oo Sockgroumd™

Column fcoll Column Fosl} Column fcall

columns -- completely without graphics.

For this, the border property replaces the
margin, which otherwise ensures that #col3 — =ims. oo oo, Son
appears correctly between the float columns.
Below is an example showing both float columns

with fixed widths of 200 pixels each.

#coll, #col2 { width: 200px; }

#col3 {
margin: 0; padding:0;
border-left: 200px #cce solid;
border-right: 200px #ecc solid;
}

04 layouts styling/3col column backgrounds.html

The result appears to be three columns of equal length. This technique is limited to solid color
backgrounds, and can only be used in combination with widths given in pixels or EM, as a border
cannot be measured in percent.

4.7 Minimum & Maximum Widths for Flexible Layouts

Flexible layouts adjust themselves dynamically to the current width of the browser window. This
behavior is normally quite useful, but is sometimes inconvenient. For example, an extremely narrow
browser window can make the layout illegible and thus unusable. You should define a lower limit for
your elements' width, perhaps oriented to a desktop resolution of 800x600 pixels, to guarantee a
legible layout even at that size.

Just as important: an upper limit for the layout's width. If the layout is too wide, copytext appears in
very long lines. In extreme cases, paragraphs of several lines become individual lines of text. This is
very tiring for readers' eyes, as they must travel a long way before reaching the break at the edge of
the page. Even these details can frustrate your site's readers.

Both scenarios can be easily avoided with the CSS properties min-width and max-width.

The YAML framework's basic layout should contain all the width definitions in the container
#page margins, as this encompasses and thus defines all the other elements.

http://www.yaml.de/fileadmin/examples/04_layouts_styling/3col_column_backgrounds.html

85 | Practice

#page margins {
min-width: 760px;
max-width: 100em;

This example defines a minimum layout width of 760 pixels. This will work even on a desktop
resolution of 800x600 pixels and allows the layout to display in the browser's full-picture mode
without creating horizontal scrollbars.

A maximum width is better defined according to the font size, in EM. A value in pixels would create
problems when zooming on text, as the layout would not adjust itself for the larger letters.
Unintentional line breaks and oddly-placed pictures would result. Basing the layout width on the font
size itself easily eliminates this problem: the example below shows a value of 100em.

4.7.1 CSS Support Lacking in Internet Explorer 5.x and 6.0

Again, Internet Explorer makes life harder for us web designers: IE up to and
including version 6.0 supports neither min-width nor max-width. Only with
Internet Explorer 7.0 did Microsoft finally add these properties, as well as the
additional min-height and max-height. This novum as well as the fixed
CSS bugs and the greater surfing security is a blessing for web programmers.

One can only hope that IE7 spreads quickly.

And yet, the older IE versions cannot be ignored when creating a layout, as IE 6 still rules the browser
statistics and will certainly not disappear so quickly, even though its market share is steadily eroded
by IE7.

For Internet Explorer 5.x and 6.0, | have prepared two Javascript methods to mimic the min-width
and max-width properties for these browsers.

4.7.2 Solution 1: IE Expressions

Internet Explorer allows the web page creator dynamic access to CSS properties with the proprietary
property expression(). With help from Javascript, we can quite simply fake the missing CSS
properties. Svend Tofte's article max-width in IE offers a general overview of the technique.

However, the examples in that article demand Quirks Mode (see DocTypes & Display Modes in

Section 2.4). Jeena Paradies invented a Code Variant, which also works in Standard Mode in |IE and
provides the basis for the solution discussed here.

Important: earlier YAML versions required Internet Explorer be set to Quirks Mode for this method:
no more!

The JS expressions should be built into the patch files, so that only IE is forced to load the required
code. Below is an excerpt, as used in the layout examples in the download package:

http://www.svendtofte.com/code/max_width_in_ie/
http://www.yaml.de/en/documentation/basics/xhtml-source-code.html
http://www.yaml.de/en/documentation/basics/xhtml-source-code.html
http://www.yaml.de/en/documentation/basics/xhtml-source-code.html
http://jeenaparadies.net/weblog/2007/mar/min-max-width-expression

86

Practice
/**
* min-width/max-width workaround for IE5.x & IE6
*
* @workaround
* Qaffected IE 5.x/Win, IEG6
* @css-for IE 5.x/Win, IEG6
* @valid no
*/

* html #page margins {
/* Fallback if JavaScript is disabled */
width: 80em;

/* JS-Expression for min-/max-width simulation */
width: expression(...);

Note 1: the doubled request for the current viewport size is indeed necessary, as IE 6.0 in Standard
Mode reaches .clientWidth in a different way than in IE 5.x, which is generally in Quirks Mode.

Note 2: You don't have to create the JS-Expression by hand for your individual layout. The YAML
Builder will help you by creating all necessary code dynamically depending on your layout settings.

This example implements a minimum layout width of 740 pixels. The maximum width is based on the
font size. The current font size of the body element must be determined and then compared with the
value 80em.

The fallback solution for those surfing without Javascript is to define width: 80em before the
expression() appears in the code.

4.7.3 Solution 2: External Javascript "minmax.js"

The Javascript file minmax.js from doxdesk.com is included in the YAML download package, in the
tools/javascript folder. This file can be integrated into the web page's head and mimics the full
functionality of the min-width, max-width, min-height, and max-height -- by evaluating the
CSS definitions and adjusting IE's rendering accordingly.

This script, when linked via Conditional Comments (<!--[if 1lte IE 6]>), is only loaded by those
browsers which need it: IE versions 5.x and 6.0. Internet Explorer 7 no longer requires this script, as it
interprets the standard CSS properties.

<head>
<!--[if lte IE 71>
<link href="../css/patches/patch 3col standard.css" rel="stylesheet"

type="text/css" />
<![endif]-->

<!--[if 1lte IE 6]>
<script type="text/javascript" src="minmax.]js"></script>

http://builder.yaml.de/
http://builder.yaml.de/
http://builder.yaml.de/
http://www.doxdesk.com/software/js/minmax.html

87 | Practice

<![endif]-->
</head>

That was it -- no more work is necessary. Watch the effect of the Javascript on the test page
minmax_js.html.

06 layouts minmax for ie/minmax js.html

Note: This Javascript does have a notable disadvantage: it is only loaded after the page has been fully
rendered. That means that a too-small or too-large browser window will first show the page without
the min-width or max-width adjustments, and will only adjust the layout after a few tenths of a
second. The page will visibly "jump", and this can be rather annoying while surfing a website. Please
test this effect before adding the script.

4.8 Drafting and Debugging

YAML provides an extra stylesheet debug.css in the eponymous yaml/debug/ folder just for creating
and debugging your layout. It can be integrated into the central stylesheet anywhere you like (as long
as it come after base.css) and provides the functions described below.

4.8.1 Automatic Check for iehacks.css

The file iehacks.css is one of the core components of the YAML framework. This stylesheet must be
integrated into every YAML-based layout (see Section 3.5: CSS Adjustments for Internet Explorer).

However, this file is not implemented via the central stylesheet, but imported by an IE patch file. The
patch file itself is integrated via Conditional Comments: all this to ensure that only Internet Explorer
must load it. As a result, one of the most common causes for display problems in YAML-based layouts
is that iehacks.css is missing -- due to incorrect filepaths or even typos in the Conditional Comment.

Within debug.css, the container #ie clearing is used to display a warning if the file iehacks.css
cannot be found.

/* CSS-Warning, if core stylesheet 'iehacks.css' is missing in the layout
=/

*:first-child+html #ie clearing { display:block }

* html #ie clearing { display:block }

#ie clearing {
width: 500px;
font-size: 25px;
position:absolute;
top: -2px;
left:0px;
background: url ("images/warning iehacks.gif") top left no-repeat;

The first line of this CSS block is ONLY for IE7 and activates the display of the container. IE5.x and IE6
are triggered by the second line. Subsequently follow the CSS commands to display the following

warning if iehacks.css is missing.

http://www.yaml.de/fileadmin/examples/06_layouts_minmax_for_ie/minmax_js.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

88

Practice

WARNING: YAML's core stylesheet iehacks.css is missing! Check path in your patchfile!

[

If the iehacks.css file is correctly loaded, it overwrites the CSS declarations and hides the warning
image.

Note: the automatic search for iehacks.css only works when the #ie clearing container is
contained in the layout.

Should your layout not need this container, you can uncomment a block to change the body
background color to test the correct integration of the file.

4.8.2 Pixel Grid for Checking Positions and Geometry

The pixel grid is made up of lines at 10x10 . S - . S—
pixel intervals. 50- and 100-pixel borderlines

are emphasized. Rulers are included along the

left and top edges. '

The grid contains two vertical orange stripes.
They mark the areas of the screen where a
vertical scrollbar appears at a resolution of
either 800x600 or 1024x768 pixels. The gray
areas mark the width greater than 800 pixels
and beyond a height of 450 pixels. The white area of the grid indicates the visible space or viewport
for a browser window at the resolution of 800x600 pixels.

The grid can be incorporated directly into the source code via the CSS class .bg grid or, if using a
browser developer toolbar like Firebug, it can be assigned to various elements as a background
image.

/*k*k
* @section pixel grid

*/

.bg grid {
background-image:url (images/grid pattern.png) !important;
background-repeat:no-repeat;
background-position:top left !important;

}

The !important rule guarantees that the grid is not turned off by later CSS declarations.

89 | Practice

4.8.3 Element Emphasis

The last block of debug.css comprises CSS classes to color particular elements or to make them
partially transparent.

/**
* @section transparency

*/

.transOFF { -moz-opacity: 1.0; opacity: 1.0; filter: alpha (Opacity=100);}
.trans50,

.transON { -moz-opacity: 0.5; opacity: 0.5; filter: alpha (Opacity=50);}
.trans25 { -moz-opacity: 0.25; opacity: 0.25; filter: alpha (Opacity=25);}
.trans75 { -moz-opacity: 0.75; opacity: 0.75; filter: alpha (Opacity=75);}

/**
* @section colors

*/

.bg_red { background-color: #£f00 !important;}
.bg blue { background-color: #00f !important;}
.bg _green { background-color: #0f0 !important;}

Note: as elements can be assigned more than one CSS class at a time, you can color the elements and
simultaneously place them on the grid: class="bg grid trans75 bg red".

4.9 Selected Application Examples

The following three sections explain example layouts for specific demands, all created with YAML.
The structure of the examples will help you understand the various ways to design the basic layout
and how to manipulate the framework. All the samples contained in the download package
examples/ folder are based on a simple screen layout, explained below.

The Screen Layout of the Examples

The basis is a flexible three-column layout with the column order 1-3-2 (the standard order) and the
columns divided into 25% | 50% | 25% of the screen. This layout is in the
examples/01_layouts_basics/ folder.

01 layouts basics/layout 3col standard.html

The minimum width is fixed at 740 pixels, orienting itself to a desktop resolution of 800x600 pixels,
and allowing a display at that resolution without horizontal scrollbars. The maximum width of the
layout is set at 80em, which in combination with the standard font size of 75% (16px*0,75=12px, set
in content.css) results in a width of 960 pixels.

The screen layout is included via the CSS file basemod.css, which is found in every theme folder
within the respective css/screen/ folder. Below is a code excerpt:

/* (en) Marginal areas & page background */
body { background: #9999a0; padding: 10px 0; }

http://www.yaml.de/fileadmin/examples/01_layouts_basics/3col_standard.html

90

Practice

/*

(en) Layout: width, background, borders */
#page margins {
min-width: 740px; max-width: 80em;
margin: 0 auto; border: lpx #889 solid; }
#page{ background: #fff; border: lpx #667 solid; }

/* (en) Centering layout in old IE-versions */
body { text-align: center }
#page margins { text-align:left }

/* (en) Designing main layout elements */
#header {
color: #fff;
background: #000 url("../../../images/bg gradient.gif") repeat-x bottom

left;

padding: 45px 2em lem 20px;
}

#tovnav { color: #aaa; background: transparent; }
#main { background: #fff }
#footer ({

color:#fff;
background: #336 url("../../../images/bg gradient.gif") repeat-x bottom

left;

padding: 15px;
}

/* (en) adjustment of main navigation */
#nav ul { margin-left: 20px; }
#nav_main {background-color: #336}

* *

* (en) Formatting content container
*

O et |
* | #header

O e |
* | #coll | #col3 | #col2 |
* | 25% | flexible | 25% |
O et |
* | #footer

O e |
=/

#coll { width: 25% }
#coll content { padding: 10px 10px 10px 20px; }

#col2 { width: 25% }
#col2 content { padding: 10px 20px 10px 10px; }

#col3 { margin: 0 25% }
#col3 content { padding: 10px }

Note: the structure of the file is based on the template basemod_draft.css from the yaml/screen/
folder, which was explained in Section 3.6: Creating the Screen Layout.

http://www.yaml.de/en/documentation/css-components/design-of-the-screen-layout.html

91

Practice

The file nav_shinybuttons.css from the yaml/navigation/ folder has been linked unchanged. The only
adjustment was in the distance of the first menu item from the left edge of the layout (#nav ul {
margin-left: 20px }).

Adjustments of the Screen Layout for Internet Explorer

The basic layout still needs two special adjustments for an error-free display in Internet Explorer 5.x
and 6.0. The 3 Pixel Bug must be fixed and minimum and maximum layout widths set. The JS-
expressions used are explained in Section 4.7.

The adjustments for Internet Explorer are kept in the patch file patch _3col standard.css,
corresponding to the basic layout, in the css/patches/ folder.

/* IE 3 Pixel Bug | Bug: 3-Pixel-Jog des Internet Explorers */

html #col3 { height: 1%; }

html #coll {margin-right: -3px;}

html #col2 {margin-left: -3px;}

html #col3 { margin-left: 24%; margin-right: 24%; }

’

X X% X ot

/* min-width / max-width for IE */

* html #page margins {
width: 80em;
width: expression(...);

That finishes the most basic version of the screen layout.

http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html

92 | Practice

4.9.1 Draft Layout "2col_left_seo"

This first layout draft with the name
2col_left_seo meets the following Example | Bekspld "2col lef se0”

requirements:

Calumn fcald Columia Fosll

e Search engine-optimized two-column
layout (navigation left in #co13 and
main content right in #col1)

e Flexible layout with flexible column
widths (25% | 75%)

e Further division of the main content
area in two columns after the first
paragraph

e Vertical 1 pixel wide separator between the columns with a vertical spacing of 1em to both
header and footer.

e Horizontal main navigation "Shiny Buttons"

e Print layout: only the main content from #col1.

examples/05 layouts advanced/2col left seo.html

Layout Draft in Detail
The central stylesheet layout 2col_left seo.css contains the following CSS components:

/* import core styles | Basis-Stylesheets einbinden*/
@import url(../../../yaml/core/base.css);

/* import screen layout | Screen-Layout einbinden */
@import url(../../../yaml/navigation/nav_shinybuttons.css);
@import url (screen/basemod.css) ;

@import url (screen/basemod 2col left seo.css);

@import url (screen/content.css);

/* import print layout | Druck-Layout einbinden */
@import url(../../../print/print 00l.css);

First, the base stylesheet base.css from the yaml/core/ folder is loaded, as well as the unmodified
navigation nav_shinybuttons.css.

Then, the basic version of the screen layout basemod.css is imported, which forms the basis of the
layout. The modifications for the requirements of the desired two-column layout are found in the
basemod_2col_left _seo.css file.

/* #coll becomes the main content column | #coll wird zur
Hauptinhaltsspalte */

#coll { width: 75%; float:right}

#coll content { padding: 10px 20px 10px 10px; }

/* hide #col2 | #col2 abschalten */
#col2 { display:none; }

/* #col3 becomes the left column | #col3 wird zur linken Spalte */
#col3 { margin-left: 0; margin-right: 75%; }

http://www.yaml.de/fileadmin/examples/05_layouts_advanced/2col_left_seo.html

93

Practice

#col3 content { padding: 10px 10px 10px 20px; }

/* graphic-free column separators between #coll and #col3 | Grafikfreier
Spaltentrenner zw. #coll und #col3*/

#col3 {border-right: 1lpx #ddd solid;}

#main {padding: lem 0}

2 Columns: with the first declaration, #coll receives 75 percent of the available width and is
floated to the right, becoming the main content column. The container #co12 is not needed and is
hidden. Finally, #col3 is moved to the left side by adjusting its margins.

Column separators: in addition, this example uses a 1 pixel wide dotted line as a vertical column
separator. This is created by using the CSS border property for the static #col13. The top and
bottom margins of the #main container determine the spacing of the line from the header and
footer.

Adjustments for Internet Explorer
The adjustments for Internet Explorer are collected in the file patch 2col left seo.css in the
css/patches folder. As the graphic-free column separators are used, the 3 Pixel Bug cannot be fixed in

this layout.

/* LAYOUT-INDEPENDENT ADJUSTMENTS ——-——-—-————————————————————— */
@import url(../../../../yaml/core/iehacks.css) ;

/* LAYOUT-DEPENDENT ADJUSTMENTS ——=-——=-——=——=————————— e */

@media screen, projection

{
/* min-width / max-width for IE

* html #page margins {
width: 80em;
width: expression(...);

First, the stylesheet integrates the global adjustment file iehacks.css from the yaml/core/ folder. (Do
not be distracted by the relative paths in this example - they are only due to the folder structure of
the sample folder.)

Next, we incorporate the IE expressions to simulate min-width and max-width in IE 5.x and 6.

Note: If you look at this example in IE5.01, you will notice that some paddings collapse. The
corrections are not demonstrated in this example, as they are not necessary for understanding
YAML.

94 | Practice

4.9.2 Layout Draft "3col_fixed_seo"

In this layout draft named 3col_fixed_seo, we
meet the following challenges: Fronmple | Bebepiel “Jend froelsew™

Colums Acall Caluimn ¥eell Culuimn ¥eeld

e Search engine-optimized three-column
layout (column order 2-1-3)

e Total width 960 pixels (240 | 480 | 240
columns)

e Further subdivision of the main content
area in two columns after the first
paragraph

e Column background left: background
image with the "Faux Columns"
technique.

e Horizontal main navigation "Shiny Buttons"

e Print layout: only the main content from #col1l

e Basis for the screen layout is the three-column basic layout of the YAML framework

examples/05 layouts advanced/3col fixed seo.html

Layout Draft in Detail
The central stylesheet layout_3col fixed seo.css contains the following CSS components:

/* import core styles | Basis-Stylesheets einbinden*/
@import url(../../../yaml/core/base.css);

/* import screen layout | Screen-Layout einbinden */
@import url(../../../yaml/navigation/nav_shinybuttons.css);
@import url (screen/basemod.css) ;

@import url (screen/basemod 3col fixed seo.css);

@import url (screen/content.css);

/* import print layout | Druck-Layout einbinden */
@import url(../../../print/print 001 draft.css);

First, we link the basic stylesheet base.css from the yaml/core/ folder as well as the unmodified
navigation nav_shinybuttons.css.

Then we import the basic version of the screen layout basemod.css, which forms the basis of the
layout. The modifications for our current requirements are in the file basemod_3col_fixed_seo.css.

Fixed Width and Centered Layout: the fixed layout width of 960 pixels is set at the outermost
container #page margins. Setting the side margins to auto can then center this container. The
minimum and maximum widths are turned off, as they are useless in a fixed layout.

http://www.yaml.de/fileadmin/examples/05_layouts_advanced/3col_fixed_seo.html

95

Practice

/* Setting the layout width and centering | Festlegung der Layoutbreite und
Zentrierung*/
#page margins {

width: 960px;

min-width:inherit;

max-width:none

Column order 2-1-3: | described the technique for resorting the columns in Section 4.4: Variable

Column Order. Now it will be used to arrange the content within the source code according to its
relevance.

/* #coll becomes the middle column | #coll wird zur mittleren Spalte */
#main {width:100%; float:left; }

#coll { width: 480px; float:left; margin-left: 240px; }
#coll content {padding-left: 10px; padding-right: 10px}

/* #col2 becomes the left colum |#col2 wird zur linken Spalte */
#col2 { width: 240px; float:left; margin-left: -720px; }
#col2 content {padding-left: 20px; padding-right: 10px}

/* #col3 becomes the right column | #col3 wird zur rechten Spalte */
#col3 { margin-left: -5px; margin-right: 0; width: 240px; float:right; }
#col3 content {padding-left: 10px; padding-right: 20px}

Note the declaration of #co13: it is now floated. With this trick, we can completely avoid the IE 5.x
and IE 6 3 Pixel Bug. The web designer's freedom is not at all limited by this step, as the column order
2-1-3 is inherently only compatible with pure pixel- or percent-based layouts -- see Section 4.4.

Faux Columns Background: the floated #col2 on the left side needs a continuous column
background. The Faux Columns Technique is perfect. The container #main is assigned the graphic as
a left-aligned and vertically-repeating background image.

/* Background image for the left column - width 240 pixels |
Hintergrundgrafik fiir linke Spalte - Grafikbreite 240 Pixel */
#main {

background-color: transparent;

background-image: wurl(../../images/bg pattern.png);

background-repeat:repeat-y;

background-position:left;

Now the layout is complete. Only Internet Explorer left to manage.

Adjustments for Internet Explorer
The adjustments for Internet Explorer are collected in the file iehacks_3col_fixed_seo.css in the
css/patches folder. In the first step, the global adjustment file iehacks.css is linked.

/* Layout-independent adjustments ----—-————---—-—---—-———- %/
@import url(../../../../yaml/core/iehacks.css) ;

http://www.yaml.de/de/dokumentation/anwendung/freie-spaltenanordnung.html
http://www.yaml.de/de/dokumentation/anwendung/freie-spaltenanordnung.html
http://www.yaml.de/de/dokumentation/anwendung/freie-spaltenanordnung.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html

96

Practice

/* Layout-dependent adjustments --——-—-————---—-——-—-—-———- %/
@media screen, projection

{

/* No layout-dependent adjustments necessary */

}

Thanks to the care taken with ijehacks.css, even in this relatively complex layout, no further
adjustments are necessary.

Alternative Solution for Centering Fixed Layouts (IE5.x Compatible)
The centering method used in this layout draft works in all modern browsers, no matter if with a
fixed or a flexible layout. Internet Explorer 5.x, an exception, will display the layout on the left.

For fixed layouts, there is alternative method for centering that will also work in the outdated
Internet Explorer 5.x.

body { padding: Oem; }

#page margins {
width: 960px;
min-width:inherit;
max-width:none

position:absolute;

top: O;

left: 50%;

margin-left: -480px;
}

#page { width: 960px; margin: lem; }

Note: the web page is centered here with a negative margin. This variant is accordingly incompatible
with flexible layouts.

97 | Practice

4.9.3 Layout Draft "Flexible Grids"

A "normal" column layout cannot always meet

all the demands of current website design. More Examgile | Bebspled "Flecibe Gridds ™
flexible systems are necessary to divide a web - S
page into smaller units. The term "grids" has : :
become common, as the units are often

oriented to a specific matrix of rulers and

spacing.

YAML can simply and easily adapt to this
concept using subtemplates. They allow space
to be divided according to percentages and can
simultaneously be nested within each other. The
layout example "flexible_grids" demonstrates

some of the possibilities of such grid-based
layouts.

examples/05 layouts advanced/flexible grids.html

Layout Draft in Detail
The central stylesheet layout_grids.css contains the following CSS components:

/* import core styles | Basis-Stylesheets einbinden*/
@import url(../../../yaml/core/base.css);

/* import screen layout | Screen-Layout einbinden */
@import url(../../../yaml/navigation/nav_shinybuttons.css);
@import url (screen/basemod.css) ;

@import url (screen/content.css);

/* import print layout | Druck-Layout einbinden */
@import url(../../../core/print base.css);

First, we link the basic stylesheet base.css from the yaml/core/ folder as well as the unmodified
navigation nav_shinybuttons.css.

Then we import the basic version of the screen layout basemod.css, which forms the basis of the
layout. For the print layout, we need only link print_base.css from the yaml/core/ folder.

Important: subtemplates are not generally linearized for print, as their use is too variegated to
predict. The page creator must regulate any desired linearization individually.

http://www.yaml.de/fileadmin/examples/05_layouts_advanced/flexible_grids.html

98

Practice

Implementation of the Grid Concept
This draft is implemented by adding the

Subcolumns

necessary subtemplate containers to the HTML
source code. As you can see in the screenshot, C33r
the content columns of the basic layout are

. €501 .c500
obviously no longer necessary.

The label "subtemplate" actually implies that
these components are meant to be inserted into
the content columns. That was indeed the
original goal. Yet the nesting possibilities make
them particularly interesting for layout
development.

Correspondingly, | break here with the standard -subcolumns
source code structure and completely replace £33 331 e33r
the content columns #col1l to #col3.

1 -
Structure of the Upper 66/33 Block
First, we must ensure that the upper and lower
blocks are properly aligned with each other. The upper block uses a division of 66% | 33%, while the
lower block divides into 33% | 33% | 33%. The right containers of both blocks duly reach the same
width. In the second step, the 33% container of the upper block is divided again with a further

subtemplate into two equal areas. The content containers are inserted so that they take up the same
vertical space in the upper as in the lower block.

Structure of the Lower 33/33/33 Block

This is a simple subtemplate divided into 33% | 33% | 33%. The only peculiarity compared to the
standard structure is that the center content block (.subcl) must be floated left. The reason is
simple: the text within should end flush with that of the 66% container above it. If the block were
centered, the margins would be different in the upper and lower blocks.

<!-- #main: Beginning of Content Area | Beginn Inhaltsbereich -->
<div id="main">
<!--Skiplink:Content -->

<!-- Subtemplate: 2 Columns with 66/33 Division | 2 Spalten mit 66/33
Teilung —-->
<div class="subcolumns">
<div class="co661">
<div class="subcl">
<h2>Blog</h2>
</div>
</div>
<div class="c33r">
<div class="subcolumns">
<div class="c501">

<div class="subcr">
<h2>Sidebar</h2>

</div>

99 | Practice

</div>

<div class="c50r">
<div class="subcr">

<h2>Advertisement</h2>

</div>

</div>

</div>
</div>
</div>

<!-- Subtemplate: 3 Columns with 33/33/33 Division | 3 Spalten mit
33/33/33 Teilung -->
<div class="subcolumns">
<div class="c331">
<div class="subcl">
<h3>Article Archive </h3>
</div>
</div>
<div class="c331">
<div class="subcl">
<h3>Latest Comments </h3>
</div>
</div>
<div class="c33r">
<div class="subcr">
<h3>Monthly Archive </h3>
</div>
</div>
</div>
</div>
<!-— #main: Ende -->

The number of required DIV containers for this layout is naturally relatively large. Nevertheless, it is
based completely on flexible widths and adjusts itself optimally to all screen proportions. The
complete width is again assigned to the container #page margins. The spatial divisions within
#main are automatically adjusted by the subtemplates themselves. Certainly we could simplify the
DIV constructions in this layout by using fixed widths -- but only then.

Adjustments for Internet Explorer
The adjustments for Internet Explorer are collected in the file iehacks subtemplates.css in the
css/patches folder.

/* LAYOUT-INDEPENDENT ADJUSTMENTS ——-=-—-=—-=—————————— - */
@import url(../../../../yaml/core/iehacks.css) ;
/* LAYOUT-DEPENDENT ADJUSTMENTS ——=-——=——=——=————————— e */

@media screen, projection

{

/* No layout-dependent adjustments necessary */

}

Special adjustments for Internet Explorer are not required in this case, as the subtemplates are a

fixed part of the framework. The adjustments are already all built into the file iehacks.css.

100 | Tools & Tips

5 Tools & Tips
5.1 Tools

In addition to the YAML framework itself and the sample layouts, the download package provides
you with further tools in the tools/ folder to make your work even easier.

5.1.1 Dynamically Generated Dummy Text
tools/javascript/ftod.js

This compact Javascript tool generates dummy text (Lorem ipsum...) within any DIV container. Two
dynamically added text links can add or remove the paragraphs.

The script is used in various layout samples in the examples/ folder of the download package. The
use of the script is quite simple. Link it in the web page header:

<script type="text/javascript" src="your path/ftod.js"> </script>

Immediately below, we configure the tool to define which areas of the page should be filled with the
dummy text. These HTML elements need unique IDs so the script can find them.

In the layout samples, these are the containers #coll content to #col3 content of the three
content columns of the basic layout.

<script type="text/javascript">

window.onload=function () { AddFillerLink("coll content", "col2 content",
"col3 content"); }

</script>

5.1.2 Dreamweaver Styles

Dreamweaver is one of the most popular software tools for professional web design on the market.
However, it still has problems up to Version 7 with the WYSIWYG display of YAML-based layouts.

Dreamweaver MX 2004 (V7.0)

tools/dreamweaver_7/base_dw?7.css

Conveniently, Dreamweaver does provide for alternative stylesheets just for drafting new pages in
WYSIWYG mode. These stylesheets are only used in the editor, and can compensate for
Dreamweaver's difficulty in displaying sophisticated CSS layouts.

For Dreamweaver MX 2004, you will find an alternative base stylesheet base_dw7.css in the
tools/dreamweaver_7/ folder, which comments out the problematic declarations. Instructions for
use with Dreamweaver are included in the file readme.txt.

100

101

Tools & Tips

Dreamweaver 8

The current version has further improved the display quality in the editor's WYSIWYG mode, so that
there's usually no need for any special adjustments of the CSS components. The only known problem
currently is with the processing of the @media rules: Dreamweaver may overwrite the screen rules
with those for print.

Should this happen, it is usually easiest to hide the print stylesheets from the editor. The file
readme.txt in the tools/dreamweaver_8/ folder describes the necessary steps.

5.2 Tips on Designing Flexible Layouts

In closing, a few more things to note when developing flexible layouts.

5.2.1 Dealing with Large Elements

It is important to fully understand the functioning of a column layout using floats. The static column
#col13 "flows around" the two float columns #coll and #col2 (even if this is not obvious in the
layout).

Background: Internet Explorer is the only browser that still has problems dealing with elements
which are too wide for the static #co13. In this case, the entire #col3 is shoved below the float
columns -- or even hidden entirely. The layout is destroyed, and the web page is barely usable.
Various solutions for this problem are available in Section 3.5.2.

All other modern browsers allow the too-wide elements to merely overflow into the neighboring
columns: the layout remains intact. Web designers must watch out for this problem, especially in
flexible layouts, as even a minimum layout width must guarantee content enough space in its
container.

5.2.2 Small Screens

Flexible layouts adjust themselves to the width available. The formatting (margins, sizes) of all
content elements should orient themselves to a sensible minimum width.

An often-used lower limit for screen display is the SVGA resolution of 800x600 pixels. This resolution
leaves a viewport of usable space of circa 760 pixels, as vertical scrollbars and even window borders
themselves reduce the available space. This is important to note, as horizontal scrollbars should be
avoided if at all possible.

All content elements (headings, tables, forms, graphics) should be created to fit into this minimum
width, so that the layout is displayed without errors or overlapping.

For even smaller resolutions (like on PDAs and other mobile devices), a new stylesheet can be quite
handy -- made accessible only via the CSS rule @media handheld. Linearized columns are better
suited to tiny displays: the containers will then appear one after the other, just as in the print
stylesheet.

101

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer/structure-dependend-adjustments.html#c861

102 | Tools & Tips

5.2.3 Flexible Side Columns

The width of the static column #co13 in flexible layouts normally results automatically from the total
width of the browser window minus the widths of the displaying float columns. Should the float
columns #col1l or #col2 also require flexible widths, they should be measured in EM or percent.

Yet when using EM for float columns, please note: the float columns always extend themselves
toward the static column #co13. If the user zooms in on the text, #co13 will eventually become too
narrow to read, as the font size in each container increases, and the width of the float containers
increases proportionally to the font size as it is oriented to EM. The float columns force #col13 to
become narrower and narrower as they expand.

As a consequence, | recommend percentage values for flexible float columns. The proportions will
then remain constant, independent of font and window size.

5.3 Known Problems
5.3.1 Internet-Explorer 5.x: Collapsing Margin on #col3

IE 5.x/Win IE 5.x/Mac IE6 IE7

Bug active Yes Unknown Yes *) Yes *)

*) This bug is actually present in these browser versions, but can be countered by the special IE
clearing (see Section 2.7: The Clearing of Column #col3).

Description: The column #col3 is defined with width:auto. Internet Explorer duly gives this
container the property hasLayout = false.

In the event that in a three-column layout, the left column is the shortest while the right column is
the longest, IE collapses the left margin of #co13.

This means that any border on #col3 (graphic-free column separator!) between #col1l and #col3
slips over to the left side of the page. Any background defined for #co13 will be stretched out to the
left edge of the page. This widening has no influence on the actual content of the DIV (text, images,
etc.), as #col13 is set to be behind the side columns via the z-index. The bug can be observed on
the following test page.

Testpage: ie_bug.html (only visible in IE5.x!)

Workaround 1: The visual effects of this bug can be avoided by using an image for the left-side
column separator, and defining this as a background image for another container, like #main.
Furthermore, #co13 should have no background assigned, neither graphic nor color (see Section 4.9:
Draft Layout "3col_fixed"). If required, these can be assigned to #main or #page.

Workaround 2: Alternatively, you can avoid the problem by activating hasLayout = true for #col3
from within the adjustment file for Internet Explorer:

#col3 {height: 1%;}

102

http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://www.yaml.de/fileadmin/static_pages/ie_bug.html

103

Tools & Tips

This CSS hack is, however, incompatible with the graphic-free column separators. Should you choose
this method, you must then use background images (Faux Columns technique) instead.

Note: YAML Version 2.5 eliminated this bug in IE 6 and IE 7. As IE 5.x is no longer very popular, this
bug does not often cause problems -- especially as it does not actually hinder access to the web page.

5.3.2 Mozilla & Firefox

Mozilla browsers up to version 1.7.0 (and Firefox up to version 1.0) contained a Float Clearing Bug.

This prevented the column separator of #co13 from reaching all the way to the footer if one of the
side columns were longer than the center column. This had no effect on graphics that were assigned
as background images.

Bugfix: the bug was fixed in the July 2004 with version 1.7.1, and is no longer relevant.

5.3.3 Netscape

Netscape 6 & 7: the browser versions 6.x are based on unfinished beta versions of Mozilla and are
extremely faulty. Although version 7 officially uses the rendering engine of Firefox 1.0.1 or 1.0.2,
there are great CSS compatibility problems here too -- especially with the versions 7.0 and 7.1.

YAML officially supports Netscape version 8 and up. YAML-based layouts had no display errors in this
version.

Netscape 7: Overflow Bug

The markup-free clearing using overflow:hidden causes display errors up to Netscape 7.1 when
used on static boxes. This means that the content in subtemplates is hidden. The following
workaround counters this bug.

Workaround: in general, it is enough to float the container in question. In this case, you must assure
that the container occupies the complete available width to avoid bothersome side effects in your
layout.

Should you use subtemplates and require support for these old Gecko engines, you can use the CSS
class .subcolumns oldgecko instead of .subcolumns. This alternative CSS class incorporates the
float hack described above.

Note: if, when using .subcolumns oldgecko, subsequent content is displayed next to the
subtemplate rather than after it (so far only seen in tables), assign the property display:inline to
those elements.

5.3.4 Opera

Opera 9.01 Bug: Opera's version 9.01 contains a hover bug, which collapses the margins between a
clearing element and the next element. The current version, 9.02, has fixed this bug.

Workaround: instead of using margins, you can create whitespace with padding or borders. This
avoids the problem entirely.

103

http://www.alistapart.com/articles/fauxcolumns/
http://www.positioniseverything.net/gecko/mozbug-clear.html

104 | Tools & Tips

Opera 6: although Opera 6 in principle should be able to display YAML-based layouts correctly,
certain conditions can lead to unpredictable phenomena such as unclickable areas, etc. These
browser bugs cannot be countered with reasonable measures. Happily, the browser is no longer

widespread enough to require our attention.

104

105 | Changelog

6 Changelog

6.1 Changes in 3.x
6.1.1 Changes in Version 3.0.5 [24.05.08]

Changes and Corrections

e Update of license conditions
For free use under Creative Commons License (CC-A 2.0) naming the author is no longer
necessary. A back link to YAML homepage is sufficient. The license texts of commercial
licenses (YAML-C) have been revised and clarified in relation to reproduction and
redistribution.

e Overall code clean-up
CSS scripting layout (white spaces within brackets and semicolon behind last properties)
within YAML files was equalised.

e Better optimised slim-files
All core files where optimised for even smaller slim-variants for production use.

e @media rule for screen layouts changed
basemod- and IE-patch files contain all relevant CSS rules for the screen layout. The @media
rules within these files have been changed to screen, projection. Therefore, the screen
layout shouldn't have an impact on the print layout anymore.

Core-Files [base.css]

e Positionierung of #topnav
Container #topnav gets property position:absolute only within #header. In any other
case it's a static container with text-alignment to the right.

e Subtemplates
CSS class . subcolumns oldgecko doesn't get overflow:hidden anymore. Containing
Floats is done via float:left.

e z-index
Specific z-index values were be removed from base.css (more simple fix for |IE Clearing bug in
iehacks.css). This should help a lot to avoid problems with e.g. dropdown menus.

Core-Files [iehacks.css]

e Bugfix for IE-Clearing-Bug using negative z-index
The IE-Clearing-Bug can't be fixed completely in IE 5.x. But now there is a more simple way to
avoid problems in IE by using one single negative z-index for #co1 3, than defining positive
values for all content columns.

Layout examples [Folder /examples/]

e New "Special Interest" example: "3col_fullheight"
In this example the overall layout height will be expanded to the bottom of the viewport, if
page content is'nt enough to fill the screen. This example is labeled as "special interest" as a
concept proof for for experienced users only.

105

106

Changelog

Improved JS-Expression for min-/max-width in IE 5.5 and IE6

The new JS-expression works without problems in Quirks Mode and EM based values will be
calculated - as they should - from parent elements font size.

Small screen layoutadjustments

Some minor changes were made in the screen layout (basemod.css) to bring it mor in line
with the YAML Builder and the Simple Project Example.

6.1.2 Changes in Version 3.0.4 [27.11.07]

Changes and Corrections

Core-Files [base.css]

Better solution to force vertical scrollbars in Firefox

The new solution forces vertical scrollbars with html { height: 100%; margin-
bottom: 1px; } thatleedsto only 1 Pixel overlap andis much more pleasing.

Changes in the reset-CSS block

The cite element was removed from the block. The blockquote element doesn't get
predefined properties font-size and width anymore. This can be done by the user within
content.css file.

Container #header

The container #header gets clear:both property. Now it is easily possible to switch
position of #header and #nav in the markup without negative interactions of floating
navigation elements on #header.

Generic classes for | ayout switching

The naming of the classes .hideleft and .hideright wasn't semantic, as the source
order of column containers is indepentend from their position in screen layout. Thererfore
the classes are renamed to .hidecoll and .hidecol2, which makes them clearly assigned.
The class .hidenone is obsolete and was removed.

Core-Files [iehacks.css]

Improved layout stability

Better stability for flexible columns in IE5.x + IE6 by adding #main {position:relative}.
This avoids wrong positioning of columns after resizing the browser window while using IE-
Expressions.

Bugfix added for List-Numbering-Bug

Affects all IE versions 5.01 - 7.0: If a list element of an ordered list gets a property that
activates hasLayout, IE doesn't correctly assign numbers to the list items.

Screenlayout Draft [content_default.css]

Fix for Gecko problems and font-size reset of monospaced elements
Elements using monospaced font (textarea, tt, pre, code) will get a standard font-size of
13px instead of 16px when resetting font-size. A bugfix was added.

Layout examples [Directory /examples/]

[3col_2-1-3]
improved CSS design without activating IE/3-Pixel-Bug,
changed imported print-stylesheet to print_100_draft.css.

106

107

Changelog

e [3col_3-1-2]
improved CSS design without activating IE/3-Pixel-Bug,
changed imported print-stylesheet to print_100_draft.css.
e [3col_fixed_seo]
Bugfix for wrong min-width behavior of Safari 3,
better CSS design without activating IE/3-Pixel-Bug
e [3col_gfxborder]
Naming of edge graphics and -containers changed to be more consistent.
e Namespace added to <html> element in all layout examples
e 3-column-examples (03_3col_layouts)
Fixed lateral paddings of content containers within the columns according to their position
on screen.

6.1.3 Changes in Version 3.0.3 [18.08.07]

Changes and Corrections

Core Files

e [iehacks.css] Bugfix for input elements in IE6
The new bugfix for the Italics-Bug in V3.0 had a side effect, that input elements were
arbitrary extended in IE6. A fix was added and slim_iehacks.css was updated.

6.1.4 Changes in Version 3.0.2 [01.08.07]

Download Package & Documentation
e [Doc en/de] some URL’s corrected.
e [Doc de] section numbering corrected
o [Doc de] Section 1.4: futher links added
e [CSSDoc-Comments] beautified indenting of comments in css files

Anderungen und Korrekturen

Core Files

e [base.css] fix for missing scrollbars in Opera 9.x
Negative margins of classes .skip, .hideme and .print were reduced to -1000em to
avoid this bug.

e [iehacks.css] CSS bugfixes for different media
Bugfixes for the Doubled Float Margin Bug and the Expanding Box Problem only affect output
on screen via @media screen rule.

e [print_base.css] print preview in IE6 & linearization of subtemplates
Subtemplates are linearized by default. The print preview in IE6 is now more stable.

Navigation Elements
e Adjusted background colors of list elements in nav_slidingdoor.css and nav_shinybuttons.css.

Other
e Some small adjustmens in the layout examples (page titles changed)

107

108 | Changelog

108

109 | Changelog

6.1.5 Changes in Version 3.0.1 [15.07.07]

Changes and Corrections

Core Files

o [fixed] A small rounding bug in Subtemplates
In v3.0 the 33- and the 66-percent Subtemplates container of had wrong widhts.

6.1.6 Changes in Version 3.0 [09.07.07]
Download Package & Documentation

¢ Bilingual Documentation
The extensive documentation as well as all comments in the framework's CSS files are now
available in English and in German.

e Comprehensive Restructuring of the Download Package
The download package now distinguishes clearly between the actual framework, the
documentation, and layout examples and tools. The structure of the framework was
reworked.

e Optimized Stylesheets for Use in Production
The core files of the framework were optimized for use on the live server: they now contain
no comments and the file size was greatly reduced.

e Conversion of all Files to Character Encoding "UTF-8"
All framework files were converted to UTF-8 character encoding. As the comments in the
files are now available in more than one language, this step was logical and unavoidable.

e (€SS Comments according to the CSSDOC Standard
The CSSDOC Standard offers a machine- and human-readable format for comments within
CSS files.

e Better Support of Dreamweaver 7 and 8
For Dreamweaver 7 (MX 2004), an alternative base stylesheet is included, which enables a
nearly error-free display of YAML-based layouts in the WYSIWYG design mode. A readme.txt
is available for both Version 7 as well as for Version 8; this explains all the necessary
adjustments for working with YAML.

e Numerous New Sample Layouts
The number of included example layouts has increased greatly. All layout examples base on
an appealing new design.

Changes and Corrections
Markup
e [changed] Simplification of the (X)HTML Source Code
The class .hold floats must no longer be explicitly assigned to #page: the bugfix is
activated by default in the iehacks.css file.

Core Files

¢ [new] Optimized Stylesheets for Production
The stylesheets in the core/ folder of the YAML framework are also available in optimized

109

110

Changelog

form (smaller filesize). These versions have no comments and compromise between
readability and smallest possible file size. This saves valuable bandwidth on the live server.
[new] Alternative Column Concept based on Classes

Four generic CSS classes allow an even simpler choice of which columns display in the basic
layout.

[new] Generic CSS Classes for Hidden Content

The CSS classes.hideme and .print now provide two options for hiding content onscreen
and yet keeping it available for screen readers and text browsers. The classes are defined in
base.css and thus always available.

[new] Handling Oversized Elements in IE

IE5.x and 6.0 can now interpret the CSS class . s1idebox, defined in iehacks.css, to let
oversized elements merely overlap onto neighboring layout areas rather than destroying a
page's layout.

[new] New Bugfix for IE Italics Bug

A new universal bugfix in base.css solves the problem with italic fonts in IE 5.x and 6.0.
Previously, this bug was addressed in the content as it occurred.

[new] IE7 Bugfix for Print

IE7 has problems printing #co13 because it does not have the property 'hasLayout' and
correspondingly forces page breaks. The file iehacks.css now contains a suitable bugfix.
[new] Bugfix for Firefox 2 overflow:hidden Bug for Print

Firefox Version 2.x has problems dealing with the property overflow:hidden in printing. A
suitable bugfix is now in the print_base.css file for the generic class . floatbox.

[changed] Min-/max-width Support for IE 5.x and IE6

The script solution via expressions was reworked, so that IE need no longer be set to Quirks
Mode and can interpret EM-based values.

[changed] Subtemplates

The CSS of the block and content containers was simplified. The block container now
encompasses the content by virtue of its float property. Oversized content elements are now
no longer cut off. The compensation for rounding errors was also improved, so that

. subcolumns itself is no longer an oversized container (> 100%). The alternative

class. subcolumns oldgecko allows support among old Gecko browsers (i.e. Netscape <
Version 7.2).

[changed] Skip-Link Navigation

The skip-links are now immediately visible as soon as the tag navigation is activated. This
behavior is required for layout accessibility.

[changed] Reworked Print Stylesheets

All layout-independent adjustments for printing were split off into an independent CSS
component file print_base.css, which is loaded via the print stylesheet. This helps keep track
of the styles and individual changes are more easily made.

[changed] Hover Effects for Links in IE7

Hover effects are no longer blocked in IE7 via iehacks.css.

[removed] Old IE Clearing (up to V2.4) is no longer supported

The CSS declarations for the old CSS class . clear columns were removed from the
base.css file.

[removed] Hacks for IE Mac Removed from the Project

IE/Mac interprets neither the normal style declarations nor the IE adjustments, as they are
loaded via Conditional Comments and the @media rule. The Mac hacks (special
comments) were rather confusing in the iehacks.css file, and were deleted. YAML supports
this outdated browser by displaying all content without any CSS formatting at all.

110

111

Changelog

Navigation Elements

[new] Navigation Elements Generally

All included navigation lists support the tab navigation correctly, including the emphasis on
the currently active menu item.

[new] Navigation Elements Generally

The active menu item in any navigation element can be set either via the ID #current or
now also via strong.

[new] Expansion of the vlist Navigation

The vlist navigation can now display four instead of the previous two navigation levels.
[removed] The Navigation "Sliding Door I" removed

The version "Sliding Door II" is still available and was renamed to nav_sliding_door.css.

Content Design

Other

[new] New CSS Component content_default.css

The file content_default.css is located in the yaml/screen/ folder and provides basic
formatting for all standard content elements and can be incorporated if desired.

[new] Generic CSS Classes for Content Design

The content_default.css component offers three new CSS classes .note, . important, and
.warning for emphasizing content.

[new] Debugging Stylesheet

A new optional stylesheet debug.css makes layout debugging easier (see Section 4.8: Drafting
and Debugging). Predefined CSS classes for displaying pixel grids, transparencies, or
background colors allow a simple emphasis / test of layout elements. The stylesheet also
warns the user, should the core stylesheet iehacks.css not load correctly.

111

http://www.yaml.de/en/documentation/practice/drafting-and-debugging.html
http://www.yaml.de/en/documentation/practice/drafting-and-debugging.html
http://www.yaml.de/en/documentation/practice/drafting-and-debugging.html

112 | License conditions

7 License conditions
7.1 Current and future releases

YAML has been licensed under a Creative Commons Attribution 2.0 License (CC-A 2.0) since version

2.2. For commercial use, two alternative license models are available (see below).

7.2 Older releases

Older releases before version 2.2 were published exclusively under a Creative Commons Attribution
2.0 License (CC-A 2.0).

7.3 General Information

The Creative Commons license permits both the non-commercial and the commercial use of the
framework on the condition that a backlink to the project homepage remains in the layout (see the
next section).

Freelancers and web agencies, however, cannot always conform to the terms of use of the Creative
Commons license, as customers seldom desire copyright notices of third party projects on their sites.
In order to make the use of YAML possible in these cases, two license models for commercial use
have been developed, alternative to the Creative Commons license. Both models are set up as single
payments and include the use of any future releases.

7.4 YAML under Creative Commons License (CC-A 2.0)

The YAML framework is published under the Creative Commons Attribution 2.0
License, which permits both private and commercial use. SOME RIGHTS RESERVED

Condition: For the free use of the YAML framework, a backlink to the YAML homepage
(http://www.yaml.de) in a suitable place (e.g.: footer of the website or in the imprint) is required.

In general | would be pleased to get a short note when new YAML-based projects are released.

112

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/de/
http://creativecommons.org/licenses/by/2.0/de/
http://creativecommons.org/licenses/by/2.0/de/
http://www.yaml.de/

113 | License conditions

7.5 YAML under Commercial License (YAML-C)

Two alternative license models are available for using the framework without the otherwise required
backlink.

Commercial licenses can be orderd in the YAML Webshop at https://shop.yaml.de.

Project Related License 59.50 EUR
(incl. 19% Taxes)

The purchaser receives the right to use the YAML framework without naming the author or linking
back to the YAML page within one project, named by the purchaser. The license includes the use of
any future releases.

Reproduction and redistribution or providing the code for downloading is only allowed with written
permission of the author.

General License 119.00 EUR
(incl. 19% Taxes)

The purchaser receives the general right to use the YAML framework without naming the author or
linking back to the YAML page. This right is independent of any project and is permanent. The license
includes the use any of future releases.

Reproduction and redistribution or providing the code for downloading is only allowed with written
permission of the author.

113

https://shop.yaml.de/

	Introduction
	What is YAML?
	What is YAML not?
	Advantages of the Framework
	Updates

	Accessibility & Web standards
	Further Links (in German)

	The Structure of the Download Package
	The Download Package
	The Framework Files
	Included Layout Samples
	Tools for Layout Development

	Browser Support
	IE 5/Mac, Netscape 4 & Co.
	Thanks

	Basics
	A Comprehensive Concept
	/The Basics: Floats
	Markup-Free Clearing
	Method 1: Clearfix
	Method 2: Overflow
	Why Two Clearing Methods?

	Structure of the XHTML Source Code
	Doctype Choice
	The Structure in Detail
	Design Freedom with the Combination Model

	Column Order in Source Code
	How Floats Work
	Layout Preparation
	Preparing the Content

	The Clearing of #col3
	Global Clearing Makes #col3 the Longest Column
	Special Clearing Solution for Internet Explorer
	IE Clearing in Internet Explorer 5.x
	IE Clearing in Internet Explorer 6.0
	IE Clearing in Internet Explorer 7.0
	Hiding Clearing Containers in Layouts

	Graphic-Free Column Divider and Column Backgrounds

	Skip-Link Navigation
	Skip-Link Navigation in the YAML Framework
	Invisible and Accessible

	CSS Components
	The CSS Concept
	Cascading

	Naming Conventions
	Basic components (core files)
	Complementary components
	Patches
	File templates

	The Central Stylesheet
	Integration & Import of the CSS Components
	Adjustments for Internet Explorer

	The Base Stylesheet base.css
	Browser Reset - Uniform Starting Point for All Browsers
	Eliminating margins and paddings
	Avoiding the italics bug in IE
	Jumping centered layouts in Firefox & Safari
	Font size and rounding errors
	Standard values for lists and quotations

	Layout Skeleton
	Increasing the Column Containers' Stability

	Additional Elements
	Generic CSS Classes for Layout Design
	Skip-Links and Invisible Content
	Further Declarations

	CSS Adjustments for Internet Explorer
	Structure of the CSS Patch File for Internet Explorer
	Integration of the CSS Adjustments in YAML's Layout
	Structure- and Layout-Independent Bugfixes
	Fundamental CSS Adjustments
	Adjusting Clearing Methods for IE
	Increasing the Reliability of the Layout
	Avoiding an Incomplete Display of Column Content
	Escaping Floats Bug
	Guillotine Bug
	Double Float-Margin Bug
	Expanding Boxes in Internet Explorer
	Internet Explorer and the Italics Problem
	Disappearing List Background Bug
	List Numbering Bug

	Structure- and Layout-Dependent Bugfixes
	3-Pixel-Jog Bug
	Handling Oversized Elements
	Disappearing Block Background Bug

	Creating the Screen Layout
	Components of the Screen Layout
	Design of the Layout Elements
	Desiging the Navigational Elements and the Content
	Putting the Layout Together

	Navigation Components
	Sliding Door Navigation
	/Shiny Buttons Navigation
	Vertical List Navigation
	Adjustments for Internet Explorer

	Content Design
	The content_default.css Template
	Setting the basic font size
	Headlines and Copytext
	HTML List Design
	Text Markup
	Generic Classes for Positioning and Highlighting Content Elements
	Automatic Formatting of Hyperlinks
	Simple Table Design
	Miscellaneous

	Layout Adjustments for Printing
	Printing Preparation
	Choosing the Printable Column Containers

	Structure of the Print Stylesheets
	Linearization of the Container Columns

	General Print Setup with print_base.css
	General Layout Changes
	Restructuring of Font Face and Size
	Automatic Display of URLs, Acronyms and Abbreviations
	Optional Column Labeling

	Practice
	Five Rules...
	Samples Included
	Tips for CSS Beginners

	Recommended Project Structure
	/Step 1: Creating Files and Folders
	Step 2: Adjusting the Paths
	Step 3: Layout Design

	/Basic Variations
	3-Column Layouts
	2-Column Layouts
	Further Alternatives for Sorting the Containers

	Variable Order and Use of Content Columns
	/Ordering Columns
	Column Order 1-3-2 and 2-3-1
	Column Order 1-2-3 and 3-2-1
	Column Order 2-1-3 and 3-1-2
	The Upshot

	Subtemplates
	Structural Composition
	The Container
	Dividing Space with DIV Blocks
	The Content Containers

	Adjusting the Subtemplates for Internet Explorer
	Examples for Subtemplates Use
	50 / 50 Split
	33 / 33 / 33 Split
	Divisions According to the Golden Ratio
	Endless Variety with Nesting

	Alternative Layout Concept

	Column Design
	Example 1 - Column Separators
	/Example 2 - Column Backgrounds

	Minimum & Maximum Widths for Flexible Layouts
	CSS Support Lacking in Internet Explorer 5.x and 6.0
	Solution 1: IE Expressions
	Solution 2: External Javascript "minmax.js"

	Drafting and Debugging
	Automatic Check for iehacks.css
	/Pixel Grid for Checking Positions and Geometry
	Element Emphasis

	Selected Application Examples
	The Screen Layout of the Examples
	Adjustments of the Screen Layout for Internet Explorer
	Draft Layout "2col_left_seo"
	Layout Draft in Detail
	Adjustments for Internet Explorer

	/Layout Draft "3col_fixed_seo"
	Layout Draft in Detail
	Adjustments for Internet Explorer
	Alternative Solution for Centering Fixed Layouts (IE5.x Compatible)

	Layout Draft "Flexible Grids"
	Layout Draft in Detail
	/Implementation of the Grid Concept
	Structure of the Upper 66|33 Block
	Structure of the Lower 33|33|33 Block
	Adjustments for Internet Explorer

	Tools & Tips
	Tools
	Dynamically Generated Dummy Text
	Dreamweaver Styles
	Dreamweaver MX 2004 (V7.0)
	Dreamweaver 8

	Tips on Designing Flexible Layouts
	Dealing with Large Elements
	Small Screens
	Flexible Side Columns

	Known Problems
	Internet-Explorer 5.x: Collapsing Margin on #col3
	Mozilla & Firefox
	Netscape
	Netscape 7: Overflow Bug

	Opera

	Changelog
	Changes in 3.x
	Changes in Version 3.0.5 [24.05.08]
	Changes and Corrections
	Core-Files [base.css]
	Core-Files [iehacks.css]
	Layout examples [Folder /examples/]

	Changes in Version 3.0.4 [27.11.07]
	Changes and Corrections
	Core-Files [base.css]
	Core-Files [iehacks.css]
	Screenlayout Draft [content_default.css]
	Layout examples [Directory /examples/]

	Changes in Version 3.0.3 [18.08.07]
	Changes and Corrections
	Core Files

	Changes in Version 3.0.2 [01.08.07]
	Download Package & Documentation
	Änderungen und Korrekturen
	Core Files
	Navigation Elements
	Other

	Changes in Version 3.0.1 [15.07.07]
	Changes and Corrections
	Core Files

	Changes in Version 3.0 [09.07.07]
	Download Package & Documentation
	Changes and Corrections
	Markup
	Core Files
	Navigation Elements
	Content Design
	Other

	License conditions
	Current and future releases
	Older releases
	General Information
	YAML under Creative Commons License (CC-A 2.0)
	YAML under Commercial License (YAML-C)

