

[Geben Sie den Firmennamen ein]

YAML 3.0

Documentation

2 Introduction

 2

Imprint
YAML PDF-Documentation
based on YAML 3.2
Last change: 27.10.2009

© Copyright Dirk Jesse (http://www.yaml.de), Dresden 2005-2009

3 Introduction

 3

Table of Content
1 Introduction ... 8

1.1 What is YAML? ..8

1.2 What is YAML not? ..9

1.3 Advantages of the Framework ..9

1.3.1 Updates ... 10

1.4 Accessibility & Web standards ... 10

1.5 The Structure of the Download Package ... 13

1.5.1 The Download Package ... 13

1.5.2 The Framework Files ... 13

1.5.3 Included Layout Samples .. 15

1.5.4 Tools for Layout Development ... 17

1.6 Browser Support .. 18

1.7 IE 5/Mac, Netscape 4 & Co. ... 19

1.8 Thanks .. 20

2 Basics ... 21

2.1 A Comprehensive Concept ... 21

2.2 The Basics: Floats ... 21

2.3 Markup-Free Clearing .. 22

2.3.1 Method 1: Clearfix .. 22

2.3.2 Method 2: Overflow ... 23

2.3.3 Why Two Clearing Methods? ... 23

2.4 Structure of the XHTML Source Code .. 23

2.4.1 Doctype Choice ... 24

2.4.2 The Structure in Detail .. 24

2.4.3 Variations of the Markup .. 26

2.4.4 Design Freedom with the Combination Model .. 26

2.5 Column Order in Source Code ... 27

2.6 How Floats Work .. 29

2.6.1 Layout Preparation ... 29

2.6.2 Preparing the Content .. 30

2.7 The Clearing of #col3 ... 32

2.7.1 Global Clearing Makes #col3 the Longest Column ... 32

4 Introduction

 4

2.7.2 Special Clearing Solution for Internet Explorer .. 32

2.7.3 Graphic-Free Column Divider ... 34

2.8 Skip Link Navigation ... 35

2.8.1 Skip Link Navigation in the YAML Framework .. 35

3 CSS Components .. 38

3.1 The CSS Concept .. 38

3.1.1 Cascading .. 38

3.2 Naming Conventions .. 39

3.2.1 Basic components (core files) ... 39

3.2.2 Complementary components ... 39

3.2.3 Patches.. 39

3.2.4 File templates ... 39

3.3 The Central Stylesheet ... 40

3.3.1 Integration & Import of the CSS Components .. 40

3.3.2 Adjustments for Internet Explorer ... 42

3.4 The Base Stylesheet base.css ... 43

3.4.1 Browser Reset - Uniform Starting Point for All Browsers ... 43

3.4.2 Standard CSS Classes .. 45

3.4.3 Building Blocks for the Screenlayout .. 47

3.4.4 Specifications for the Print Version .. 48

3.5 CSS Adjustments for Internet Explorer .. 50

3.5.1 Structure- and Layout-Independent Bugfixes .. 51

3.5.2 Structure- and Layout-Dependent Bugfixes ... 57

3.6 Creating the Screen Layout .. 59

3.6.1 Putting the Layout Together ... 61

3.7 Navigation Components .. 62

3.7.1 Sliding Door Navigation .. 62

3.7.2 Shiny Buttons Navigation ... 62

3.7.3 Vertical List Navigation ... 63

3.8 Content Design ... 65

3.8.1 The content_default.css Template ... 65

3.9 Layout Adjustments for Printing .. 70

3.9.1 Printing Preparation ... 70

3.9.2 Structure of the Print Stylesheets .. 70

5 Introduction

 5

3.10 The Form Construction Kit ... 74

3.10.1 The Markup... 74

3.10.2 The CSS of the Form Components .. 76

3.10.3 Adjustments for Internet Explorer ... 79

4 Practice .. 81

4.1 Five Rules... .. 81

4.1.1 Samples Included .. 81

4.1.2 Tips for CSS Beginners .. 82

4.2 Recommended Project Structure .. 82

4.2.1 Step 1: Creating Files and Folders... 82

4.2.2 Step 2: Adjusting the Paths ... 82

4.2.3 Step 3: Layout Design ... 83

4.3 Basic Variations .. 84

4.3.1 3-Column Layouts ... 85

4.3.2 2-Column Layouts ... 86

4.3.3 Further Alternatives for Sorting the Containers ... 87

4.3.4 Generic CSS Classes for Layout Design ... 87

4.4 Variable Order and Use of Content Columns... 89

4.4.1 Ordering Columns ... 89

4.4.2 Column Order 1-3-2 and 2-3-1 ... 91

4.4.3 Column Order 1-2-3 and 3-2-1 ... 92

4.4.4 Column Order 2-1-3 and 3-1-2 ... 93

4.4.5 The Upshot ... 95

4.5 Subtemplates ... 96

4.5.1 Structural Composition ... 96

4.5.2 Adjusting the Subtemplates for Internet Explorer ... 99

4.5.3 Examples for Subtemplates Use ... 100

4.5.4 Special Case: Equal Height Boxes ... 101

4.6 Column Design ... 103

4.6.1 Example 1 - Column Separators.. 103

4.6.2 Example 2 - Column Backgrounds .. 104

4.7 Minimum & Maximum Widths for Flexible Layouts .. 105

4.7.1 CSS Support Lacking in Internet Explorer 5.x and 6.0 ... 105

4.7.2 Solution 1: IE Expressions ... 106

6 Introduction

 6

4.7.3 Solution 2: External Javascript "minmax.js" ... 107

4.8 Selected Application Examples .. 108

4.8.1 Draft Layout "2col_advanced" .. 110

4.8.2 Layout Draft "3col_advanced" .. 112

4.8.3 Layout Draft "Flexible Grids" .. 115

5 Tools & Tips ... 118

5.1 Tools ... 118

5.1.1 Dynamically Generated Dummy Text ... 118

5.1.2 Dreamweaver Styles ... 118

5.2 Tips on Designing Flexible Layouts ... 119

5.2.1 Dealing with Large Elements .. 119

5.2.2 Small Screens .. 119

5.2.3 Flexible Side Columns ... 120

5.3 Known Problems .. 120

5.3.1 Internet-Explorer 5.x: Collapsing Margin on #col3 ... 120

5.3.2 Mozilla & Firefox ... 121

5.3.3 Netscape ... 121

5.3.4 Opera .. 121

5.4 Add-ons .. 123

5.4.1 General ... 123

5.4.2 Add-on: Accessible Tabs & SyncHeight ... 123

5.4.3 Add-on: Microformats .. 124

5.4.4 Add-on: RTL Support ... 124

6 Changelog .. 126

6.1 Changes in 3.x .. 126

6.1.1 Changes in Version 3.2 [27.10.09] .. 126

6.1.2 Changes in Version 3.1 [20.01.09] .. 129

6.1.3 Changes in Version 3.0.6 [09.06.08] ... 130

6.1.4 Changes in Version 3.0.5 [24.05.08] ... 131

6.1.5 Changes in Version 3.0.4 [27.11.07] ... 132

6.1.6 Changes in Version 3.0.3 [18.08.07] ... 133

6.1.7 Changes in Version 3.0.2 [01.08.07] ... 133

6.1.8 Changes in Version 3.0.1 [15.07.07] ... 133

6.1.9 Changes in Version 3.0 [09.07.07] .. 134

7 Introduction

 7

7 License conditions .. 137

7.1 Current and future releases ... 137

7.2 Older releases .. 137

7.3 General Information .. 137

7.4 YAML under Creative Commons License (CC-A 2.0) .. 137

7.5 YAML under Commercial License (YAML-C) .. 138

8 Introduction

 8

1 Introduction
1.1 What is YAML?

YAML was conceived as a basis for developing flexible layouts, with a strong emphasis on meeting

the challenges that result from working with elastic containers and varying units.

The most important features:

 A flexible, accessible layout concept for designing column-based and grid-based CSS layouts,
 Extensive Cross-browser compatiblity (IE 5.0/Win+) for bullet-proof layout rendering in every

situation,
 The fewest possible restrictions for the designer (fixed or flexible layouts, variable column

widths, etc.),
 User-defined order of content columns in the source code ("any order columns"),
 Stylesheet templates ordered by function to work efficently,
 Column separators and backgrounds all generated without images and continuous down to

the footer,
 flexible grid-system via subtemplates for almost all purposes

This system allows for the rapid development of designs with one to three columns, with fixed or

variable widths. With subtemplates (flexible grids), the column system can be endlessly nested and

expanded. The YAML basis layout can be extended with special containers which help set the layout

width or can create a border around the layout. But why so many containers?

There are two basic methods for creating a layout:

The Bottom-Up Principle

The programmer starts with a blank page. The containers must all be created, positioned,

and styled with CSS. A basic layout does not yet exist. While programming the layout, the

designer must discover all relevant browser bugs and either avoid or hack them.

The Top-Down Principle

Here, the programmer begins with a cross-browser-compatible, functional, modular skeleton

layout, which contains all the most often-used page elements. The web designer then

modifies this basic layout as he wishes and finally optimizes the XHTML and CSS code by

removing unnecessary elements from the layout.

YAML was built for those working according to the second principle, and is best described with the

terms "building block system" or "framework".

http://www.yaml.de/en/documentation/practice/subtemplates.html

9 Introduction

 9

1.2 What is YAML not?

YAML is not a prepackaged layout. That would contradict the main idea behind the Top-Down

principle. Without optimization for the demands of a particular design, the unnecessary elements

(HTML / CSS) are just extra ballast.

Author’s note: the YAML framework provides a cross-browser compatible basic layout as well as
many helpful CSS components, allowing programmers to devote more time and energy to creative
design.

Nothing is further from my intentions than a translation of the monotony of row houses into the area
of web design by the repeated use of YAML as a finished layout.

Of course it is not forbidden to use YAML and all its components as a “ready to use” layout. Yet, while

adjusting the code to the site’s individual design, you should always keep the code as simple and

clean as possible. Maintenance and bugfixing in the code will be that much easier. Unnecessary

elements in the XHTML source code or the CSS files should thus be removed once the layout is final.

1.3 Advantages of the Framework

YAML is more than just a simple multicolumn layout. It is an entire layout framework, highly flexible,

and tested under real-world conditions. YAML supplies diverse modules and ensures that they work

together flawlessly. Here are a few advantages of the YAML framework:

Browser Compatibility

YAML's components are all fully tested to ensure identical layouts in all browsers. All

necessary hacks are already built in, minimizing the usual layout testing time for the various

programs.

Building Block Principle

The modular design allows particularly efficient layout design using the provided code.

The basic components combine to form a basic but fully functioning layout. Additional

components complete or modify this basis. These CSS components are universally usable:

once written and tested, they can be built in as needed and are available for future projects.

Examples include the simple layout variations with the basemod files as well as the print

stylesheets.

Flexibility in layout design

The framework design provides for much more than just a simple three-column layout. The

flexible basis allows columns to be placed anywhere on the screen. The dynamic character of

the floats allows even one- or two-column layouts in just a few clicks. Column and layout

widths can be defined in any unit of measurement. Units can even be mixed among different

column widths.

10 Introduction

 10

Robust Code

The XHTML and CSS construction of the individual components guarantees almost complete

independence from the structure of the actual content.

The nesting of the main elements of the page in separate DIV containers ensures the correct

positioning of the elements on the screen, irrespective of the later use of any particular

container.

1.3.1 Updates

The YAML Framework is constantly updated. All changes in and additions to each new version are

summarized in the changelog and when necessary, documented more extensively.

Updates of the framework basis are possible anytime, thanks to the organization of the CSS

components and the separation of YAML and user CSS. Relaunches and redesigns are excellent

opportunities for reworking YAML-based websites – or when the extended functionality of a new

YAML version becomes necessary.

Important: YAML has always been built with robust and stable components. However, existing
websites need not be updated with every new version. A perfectly functioning CSS layout does not
need monthly security patches!

An update of the framework basis is recommended when known CSS problems can be solved with a
new YAML version.

1.4 Accessibility & Web standards

The definitions of various levels of accessibility cannot be discussed here, and a thorough treatment

of the advantages of using web standards goes beyond the scope of this site. Here are some

highlights of YAML's usefulness in and practicability in both these areas.

Valid XHTML code and valid stylesheets

A valid skeleton structure is the basis of any website for all target audiences, regardless of

any handicaps. Validity guarantees a high degree of uniformity in the presentation of the

website in various browsers. The individual components of the YAML framework all found on

valid XHTML and CSS code.

Extensive browser support

YAML aims to ensure a uniform presentation of a website in all browsers. The problems of

the sometimes highly variable support of CSS standards, in particular the many CSS bugs in

Internet Explorer, are well known. Still, as Internet Explorer is clearly the worldwide market

leader, it is completely supported. It is simply not sensible to optimize a CSS framework only

for supposedly standard-conform browsers.

Internet Explorer’s current market share is estimated at about 90% worldwide. The

percentage of IE 5.x users has fallen to below 10%. This number is close to the numbers of

surfers using alternative browsers like Opera, Mozilla, or Safari. Firefox alone has won more

11 Introduction

 11

than 5% of internet users. Support for IE 5.x is thus just as sensible and justified as the

support of modern browsers.

Doing without layout tables

Opposing opinions on layout tables are easily found online. While generally agreed that

nested tables are outdated, user-unfriendly, and difficult to update, controversy still reigns

over the use of tables themselves: if their (non-nested!) application is ever justifiable. The

following presents a few advantages resulting from YAML’s non-table layout:

 Free choice in column order

The order of the column containers in the source code is completely independent of
the columns’ position on the screen. The accessibility of the content for text
browsers and screen readers is greatly improved, as they present content linearly.
Search engine placement can also benefit from this flexibility.

 Flexibility in layout and printing

Individual columns can be removed from the screen layout via CSS (for one- or two-
column layouts). Specific features like the navigation, sidebars, etc., can be turned
off for printing purposes with the print stylesheet. In addition, column containers are
easily linearized for printing: set to full page width and presented in source order.

 Rendering speed in the browser

Tables are only rendered by the browser when all sections of the table have
completely loaded. When using DIV containers, the browser starts rendering as soon
as the first container has loaded. Pages with table layouts thus make users wait
longer for content. Even today, many users still connect via modem and ISDN. Longer
load times are particularly noticeable and annoying for these readers.

Applying variable size units

A further important milestone on the road to accessible websites is the use of relative units

of measurement (for example in layout widths or font sizes). Accessibility problems occur for

all of us, not just for those with disabilities, when fixed layouts and tiny type make reading

difficult, or when web pages cannot be legibly printed. The flexible setup of all design

elements (column sizes, margins, font sizes) was one of the main principles behind the

development of the YAML framework.

Semantic Code

The semantically correct markup of content contributes to simpler code, easier reading in

alternative browsers, and greater compatibility with future products. The YAML framework

provides the design skeleton for a website, which must function regardless of the nature of

the later content. The involvement of content elements in the layout design, which, when

carefully done, could lead to fewer DIV elements for the basis layout, cannot be anticipated

by YAML’s framer. The optimizing of the XHTML markup and the stylesheets must lie in the

hands of the web designer after the end layout is final.

12 Introduction

 12

Skip Link Navigation

In addition to the possibilities of the variable column order, which allows for optimum

linearization of content for text browsers and screen readers, the skip link navigation

improves maneuverability on a web page equipped with links to important content elements

(navigation, content area) – particularly important for screen readers.

The YAML framework provides a flexible skeleton structure, oriented to the demands of barrier-free

web design and exploiting the advantages of web standards. In this context, I am proud to mention

the Redesign 2006 of the website “Einfach für Alle” (“Easy for Everyone”). The website is an initiative

of “Aktion Mensch” (“Action Human”) and has promoted barrier-free web design for many years. The

current flexible multiple-column layout from 2006 is based in great part on YAML.

Accessibility and standards could only be treated briefly here; I recommend the following online

articles for those interested in more.

Further Links (in German)

BITV für Alle

Barrierefrei zum Mitnehmen

Retro-Coding: Semantischer Code ist der Anfang von gutem Design

Semantischer Code - Definitionen, Methoden, Zweifel

http://www.einfach-fuer-alle.de/artikel/efa-relaunch/2006/teil4/
http://www.einfach-fuer-alle.de/
http://www.aktion-mensch.de/
http://www.einfach-fuer-alle.de/artikel/bitvfueralle/
http://www.einfach-fuer-alle.de/artikel/zummitnehmen/
http://www.vorsprungdurchwebstandards.de/theory/retro-coding/
http://www.vorsprungdurchwebstandards.de/theory/semantischer-code/

13 Introduction

 13

1.5 The Structure of the Download Package

The following describes the structure of the download package, available directly on the homepage.

The package contains not only the files for the framework itself, but the complete documentation,

several application examples, and a few helpful tools for developing layouts.

1.5.1 The Download Package

File/Folder Description

documentation/ The documentation of the framework in English and in the original German, as
PDF files. This is a complete copy of the online documentation from yaml.de.

Read the documentation carefully and take the bold tips into account when using
the framework.

examples/ This folder contains many application examples of the YAML framework with
complete layout examples. The samples are organized according to various
themes. The documentation explains selected examples in great detail.

js/ This folder contains a small script for dumy texts as well as the JavaScript library
jQuery.

tools/ This folder contains several tools for developing layouts. The files in this folder are
not necessary for the framework's functionality and need not be placed on the
live server.

yaml/ This folder contains all the framework files. These are the finished, out-of-the-box
CSS components as well as templates for the actual layout design. The relevance
of each individual component is thoroughly explained in the documentation. Tips
for using the framework in actual practice are in Chapter 4.

1.5.2 The Framework Files

The YAML framework consists of a predefined XHTML structure as well as a series of CSS files with

various functions. These CSS files are in the yaml folder. In addition to the actual CSS components,

this folder also contains "drafts", which you can use to design your own layout. These templates are

meant to speed your implementation of YAML and simplify the first basic steps.

File/Folder Description

/yaml/

central_draft.css
markup_draft.html

This is the trunk folder of the YAML framework. It contains the file
central_draft.css: a so-called central stylesheet (see section 3.3).

Via this central stylesheet, YAML embeds all the necessary CSS components
in the (X)HTML source code of the website -- with the @import rule.

The file markup_draft.html is also here, which contains the source code
structure for the YAML framework.

http://www.yaml.de/en/home.html
http://www.yaml.de/fileadmin/examples/index.html
http://www.jquery.com/
http://www.yaml.de/en/documentation/practice/general.html

14 Introduction

 14

/yaml/add-ons/

accessible-tabs
microformats
rtl-support
syncheight

This folder contains several add-ons to the YAML layout frameworks. These
are optional elements that aren't necessary for your work but they provide
meaningful extensions to the framework core.

 Accessible Tabs (jQuery plugin)

 Mircoformats

 RTL-Language-Support

 SyncHeight (jQuery plugin)

/yaml/core/

js/
js/webkit-focusfix.js
base.css
iehacks.css
slim_base.css
slim_iehacks.css

This folder, as the name implies, contains the core CSS components for
YAML. Used together with the predefined XHTML markup and the file
base.css, these files produce a robust three-column basic layout with
header and footer (see Section 3.4: The Base Stylesheet).

The file iehacks.css contains all the CSS adjustments that are necessary for
Internet Explorer (Versionen 5.x - 7.0) and are independent of the layout
and structure (see Section 3.5: CSS Adjustments for Internet Explorer). It is
a core component and required for every YAML-based layout. Both these
basic files together ensure the browser-independent uniform display of the
basic layout.

Each of these stylesheets has its own slim version: intended for the live
site, they are optimized for size.

The folder js contains the JS-file webkit-focusfix.js that solves a focus
problem of Webkit-based browsers (see section 2.8)

/yaml/screen/

basemod_draft.css
content_default.css
forms.css

CSS components for the screen design are in this folder.

basemod_draft.css is a template for the screen layout. It can be copied into
different projects and the predefined containers within can be changed or
added to with additional elements. Every YAML-based layout will
incorporate one or more such basic modification (basemod) files via the
central stylesheet (see section 3.6: Creating the Screen Layout as well as
Chapter 4).

The second file in this folder is content_default.css. Often-used content
elements have been predefined here. This file too can be copied into any
project and adjusted accordingly. More information is available in
Section 3.8.

forms.css is the CSS-part of YAMLs form construction kit. See section 3.10
for more information.

/yaml/navigation/

images/
nav_shinybuttons.css
nav_slidingdoorI.css
nav_vlist.css

This subfolder contains the components for the navigation. Various list
navigations - horizontal as well as vertical - are provided within the YAML
framework.

 nav_shinybuttons (horizontal navigation)
 nav_slidingdoor (horizontal navigation)

http://www.yaml.de/en/documentation/css-components/base-stylesheet.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/basics/skip-links.html
http://www.yaml.de/en/documentation/css-components/design-of-the-screen-layout.html
http://www.yaml.de/en/documentation/practice/general.html
http://www.yaml.de/en/documentation/css-components/design-of-the-content.html
http://www.yaml.de/en/documentation/css-components/formularbaukasten.html

15 Introduction

 15

 nav_vlist (vertical navigation)

More information is available in Section 3.7.

/yaml/print/

print_003_draft.css
print_020_draft.css
print_023_draft.css
print_100_draft.css
print_103_draft.css
print_120_draft.css
print_123_draft.css
print_draft.css

This folder contains the CSS files for printing YAML-based layouts.

These files modify the screen layout for paper. More information on print
layouts is in Section 3.9: Adjusting the Layout for Print.

/yaml/patches/

patch_layout_draft.css
patch_nav_vlist.css

This folder contains the adjustment files for Internet Explorer. The file
patch_layout_draft.css is a draft for such a file.

Such stylesheets contain all the necessary CSS hacks for the layout in
Internet Explorer and are incorporated into the website with a so-called
conditional comment (see Section 3.5: CSS Adjustments for Internet
Explorer).

The second file is patch_nav_vlist.css, which belongs to the navigation file
nav_vlist.css and adjusts those CSS commands for Internet Explorer. More
information is available in Section 3.7.

1.5.3 Included Layout Samples

The layout examples described in the following are intended to provide a glimpse of the many varied

possibilities for the application of the framework. Several of the samples are described more

thoroughly in the documentation, others are meant as inspiration for solving frequently encountered

design problems. The necessary YAML CSS components for each example are inside the given folders

in the subfolder css. The file and folder names are intentionally rather long in order to make clear the

meaning of the individual CSS components.

Datei/Verzeichnis Beschreibung

/examples/01_layout_basics/

3col_standard.html
building_forms.html
multicolumnar_forms.html
styling_content.html

This folder contains two very simple examples. The sample
3col_standard.html contains the YAML basis layout: a simple,
flexible, 3-column layout with a horizontal navigation.

Both examples building_forms.html and
multicolumnar_forms.html demonstrate the use of the Form
Construction Kit. For more information, please see: Section 3.10

The example styling_content.html demonstrates all the content
elements which are influenced by the integration of the default
CSS filecontent_default.css, see Section 3.8.

http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/css-components/layout-for-print-media.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/css-components/form-construction-kit.html
http://www.yaml.de/en/documentation/css-components/design-of-the-content.html

16 Introduction

 16

/examples/02_layouts_2col/

2col_left_13.html
2col_left_31.html
2col_right_13.html
2col_right_31.html

All the important combinations for 2-column YAML layouts are in
this folder.

/examples/03_layouts_3col/

3col_1-2-3.html
3col_1-3-2.html
3col_2-1-3.html
3col_2-3-1.html
3col_3-1-2.html
3col_3-2-1.html

Here are all variations of the 3-column YAML layout. More
information is available in Section 4.4: Variable Column Order.

/examples/04_layouts_styling/

3col_column_dividers.html
3col_faux_columns.html
3col_liquid_faux_columns.html
3col_gfxborder.html
dynamic_layout_switching.html

Many examples with some far-reaching graphical layout
adjustments. Samples of graphic column separators and
backgrounds as well as graphical borders.

The section dynamic_layout_switching.html demonstrates the
use of CSS classes to switch among various layouts, see Section
4.3.

/examples/05_navigation/

menu_shiny_buttons.html
menu_sliding_door.html
menu_vertical_listnav.html

Three examples that show the use of the included navigation
components. More information is available in Section 3.7.

/examples/06_layouts_advanced/

2col_left_seo.html
3col_fixed_seo.html
flexible_grids.html
flexible_grids2.html
equal_height_boxes.html

This folder contains a few more complex layouts, oriented to the
usual practical demands. In these examples, various functions of
YAML are integrated and the use of subtemplates for subdividing
content and for layout purposes is demonstrated.

The example "equal height boxes" is quite a specialty. It
demonstrates the creation of content containers that are all the
same height by using subtemplates: see Section 4.5.

/examples/07_layouts_advanced_2/

fullpage_3col.html
fullpage_grids.html

This folder presents two layout examples demonstrating the
multiple use of the CSS classes .page_margins and .page, using
a new hierarchy for the containers.

/examples/08_special_interest/

3col_fullheight.html
minmax_js.html

3col_fullheight.html demonstrates a special case were the
minimal layout height gets expanded to the full height of the
viewport, even without any content.

minmax_js.html demonstrates an alternative method to simulate
CSS properties min-width and max-width in Internet Explorer 5.x
and 6.0 without using JS-Expressions. More information is
available in Section 4.7.

http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.yaml.de/en/documentation/practice/basic-variations.html
http://www.yaml.de/en/documentation/practice/basic-variations.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/practice/subtemplates.html
http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html

17 Introduction

 17

/examples/09_add-ons/

accessible_tabs.html
rtl_support.html
styled_microformats.html

These layout examples demonstrate the use of the provided add-
ons, that come along with the download package in folder
yaml/add-ons/.

1.5.4 Tools for Layout Development

As already mentioned in the introduction, this folder contains a few tools for developing layouts. The

files here are not necessary for YAML's function and are not part of the framework.

Datei/Verzeichnis Beschreibung

/js/

ftod.js This little script creates dummy text on the fly. It is used in the application
samples.

minmax.js This script allows the use of the CSS properties min-width and max-width in
Internet Explorer. More information is available in Section 4.7: Minimum &
Maximum Widths.

/js/lib/

jquery_1.3.js
jquery_1.3.min.js

Here you'll find the latest release (december 2008) of the JavaScript library
jQuery.

/tools/dreamweaver/

base_dw7.css Dreamweaver is a versatile and popular editor for creating web pages. Its
WYSIWYG capabilities for CSS layouts are, however, somewhat restricted. The
file in this folder simplifies the use of Dreamweaver's Design mode with YAML
layouts. More information is available in Section 5.1.

http://www.yaml.de/en/documentation/tools-tips/add-ons.html
http://www.yaml.de/en/documentation/tools-tips/add-ons.html
http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html
http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html
http://www.jquery.com/
http://www.yaml.de/en/documentation/tools-tips/general.html

18 Introduction

 18

1.6 Browser Support

 Windows

o Internet Explorer 5.x

o Internet Explorer 6.0

o Internet Explorer 7.0

o Internet Explorer 8.0

 Macintosh OS

o Camino 0.6 +

 Linux

o Konqueror 3.3 +

o Galeon 1.3 +

o Epiphany 1.4.8 +

o Lynx (Textbrowser)

 All operating systems

o Firefox 1.0 +

o Mozilla Suite 1.7.1 +

o Apple Safari 1.0.3 +

o Google Chrome 1.0+

o SeaMonkey 1.0 +

o Netscape 8.0 +

o Opera 6 +

The browsers listed here are completely supported: YAML-based layouts will be consistent in all of

them. A plus sign (+) after the version number means that all later versions should work just as well

with YAML.

19 Introduction

 19

1.7 IE 5/Mac, Netscape 4 & Co.

Internet Explorer 5 for the Macintosh and Netscape 4 — as well as all other

outdated browsers — have their own special place in YAML's support.

Outdated browsers have great difficulty displaying modern CSS layouts. It

makes sense to keep this actual CSS completely hidden from these browsers

— as it would only confuse them — and thus still allow the user access to the

actual content.

YAML's CSS building blocks use the rules of @import or @media to deal with

this problem. Internet Explorer 5/Mac, Netscape 4x, and many other outdated

browsers are incapable of interpreting one or the other of these rules, and so are automatically

shunted away from the modern CSS declarations. Users see the complete content: unformatted, but

legible.

Certain versions of Netscape are known to crash at the sight of a mere floated picture. The consistent

use of the shunting principle for aged browsers allows all users access to the content.

In short: outdated browsers are supported by YAML in such a way as to allow users to read the

content without being hampered by incomplete CSS interpretation. Content is visible in the

browser's standard design, similar in appearance to text browser interpretations (i.e. Lynx).

20 Introduction

 20

1.8 Thanks

"Yet Another Multicolumn Layout" (YAML) is a one-man project, begun in spring 2005 when I needed

a flexible and all-purpose basic layout for my own small website projects. It began as a hobby project,

as I am a civil engineer in my day job, and am only involved with web design on the side. Jens

Grochtdreis encouraged me to publish Version 1.0 in October 2005, after having already supported

me in developing the framework.

Since then, the project has grown into a comprehensive and stable CSS framework and I became a

book author. Public interest grows with each new version, and more and more comments and emails

arrive in my inbox. This feedback is particularly important and helpful for me as a developer: I would

like to thank the users for all their support.

I would like to especially thank...

 Nils Pooker for his extensive user feedback on YAML and the YAML Builder,
 Ansgar Hein for the legwork and great support on the Form Construction Kit,
 Alexander Haß for more legwork and the help with the RTL Support Add-on,
 Michael Jendryschik for the assistance with the Microformats Add-on,
 Tomas Caspers for his tips on accessibility,
 Michael Preuß for the help with the blog,
 Peter Müller for the time to discuss so many ideas by phone,
 Jens Grochtdreis for long years of advice and support,
 Dirk Ginader for the support with several jQuery ideas,
 Folkert Groeneveld for the YAML logo,
 Genevieve Cory for the translation of the documentation

Dresden, 18.Oct.2009

Dirk Jesse

http://www.yaml.de/en/the-yaml-book.html
http://www.pookerart.de/
http://www.anatom5.de/
http://www.yaml-fuer-drupal.de/
http://jendryschik.de/
http://www.tomascaspers.de/
http://dynamicinternet.eu/
http://www.little-boxes.de/
http://www.grochtdreis.de/weblog/
http://blog.ginader.de/
http://www.groeneveld-design.de/
http://cory.de/

21 Basics

 21

2 Basics
2.1 A Comprehensive Concept

As the introductory chapter demonstrated, YAML's construction founds on many various

considerations, which are most easily explained using the XHTML source code structure. YAML's high

flexibility requires a certain amount of complexity, but fear ye not. This and the following chapters

explain YAML's basic concept using many examples and source code snippets.

CSS can only be learned and used effectively and precisely when one knows the traps along the way.

As in real life, working with CSS is not always easy peasy. Internet Explorer is outstanding in its field

as far as the number of CSS bugs it contains — creating headaches for both beginners and

professionals. But no pain, no gain — in spite of these bugs, you'll see that even Internet Explorer can

be maneuvered into displaying accurate, modern, accessible CSS layouts.

This documentation will not merely explain YAML's use in standard-conform browsers, but when

necessary includes explanations of Internet Explorer's particular problems and their possible

solutions. That's my idea of a comprehensive concept.

Let us begin...

2.2 The Basics: Floats

If an element (a picture or a table) is declared to be a floated object, it is

released from the normal text flow and the following elements flow around it,

as if it were an obstacle in a stream. This type of positioning only requires the

left-aligning or right-aligning of the element (with float:left; or

float:right;) within the available space. The browser places the rest of

the content around the floated object.

Note: you are advised to read up on the theory of floats in order to better understand their
functioning. I highly recommend the article "Float: The Theory" by Big John of
positioniseverything.net. "Floats: Die Theorie" is the German translation by Andreas Kalt and Jens
Grochtdreis.

Flexible layouts and columns with flexible widths are particularly amenable to floated objects

embedded in the text, as the browser can then optimally place line breaks and content within the

column.

The text flow is stopped with the CSS property clear:value; (Description in German).

Unfortunately, as the W3C has currently defined text flow, it cannot be automatically stopped at the

end of the current paragraph or the next subheadline.

Stopping the text flow thus usually requires additional and optically visible HTML code. The use of

empty p or hr tags is widespread, but this is certainly not practical.

<p style="clear:left;"> </p>

http://www.yaml.de/en/documentation/introduction/general.html
http://www.positioniseverything.net/articles.html
http://css-technik.de/css-examples/219_9/
http://www.andreas-kalt.de/
http://www.grochtdreis.de/
http://www.grochtdreis.de/
http://de.selfhtml.org/css/eigenschaften/positionierung.htm#clear

22 Basics

 22

This is particularly disadvantageous for layouts, as those additional code elements are still displayed

by the browser as unintentional vertical space.

The precise use of CSS lets us avoid this problem and makes floated environments practical for layout

design. In Spring 2005, several web designers devoted themselves to this topic and published

interesting ideas.

Two of these markup-free clearing methods are used in YAML. Both methods are explained in the

following section (the right column).

2.3 Markup-Free Clearing

Effective use of floats was always very complicated, as extra code / markup was necessary to end the

flow of text -- often in the form of inline CSS. Floats were thus primarily used for only the simplest

layout tasks, such as arranging images.

The expanded capability of CSS 2 and CSS 2.1 and the current good browser support, the applications

for floats are endless. The key is the markup-free clearing via CSS.

2.3.1 Method 1: Clearfix

The Clearfix Method is from Big John's article "How To Clear Floats Without Structural Markup",

which thoroughly explains Tony Aslett's [csscreator.com] clearing method. A German translation of

this tutorial is available here.

/* Clearfix-Hack */

.clearfix:after {

 content: ".";

 display: block;

 height: 0;

 clear: both;

 visibility: hidden;

}

.clearfix {display: inline-table;}

/* Hides from IE-mac */

* html .clearfix {height: 1%;}

.clearfix {display: block;}

/* End hide from IE-mac */

IE 7 requires a minor adjustment, which is explained in the article "New clearing method needed for

IE7?"

http://www.positioniseverything.net/easyclearing.html
http://csscreator.com/
http://jassesnee.de/easyclear/
http://www.456bereastreet.com/archive/200603/new_clearing_method_needed_for_ie7/
http://www.456bereastreet.com/archive/200603/new_clearing_method_needed_for_ie7/

23 Basics

 23

2.3.2 Method 2: Overflow

A further and most importantly very simple method was pointed out by Paul O'Brien, and is

thoroughly explained in the article Simple Clearing of Floats. The surrounding DIV is given the CSS

property overflow:auto;. This method has proven to very robust, particularly in the nesting of

floats within the content columns.

The value auto, however, can lead to unwanted scrollbars on the edges of the surrounding

container. To avoid this, the YAML framework uses overflow:hidden;, preventing scrollbars.

/* Clearing with overflow */

.floatbox { overflow: hidden; }

More information on this topic in Section 2.6: How Floats Work.

2.3.3 Why Two Clearing Methods?

A fair question, with a clear answer. Although both methods in principle lead to the same result - the

parent element surrounding the float - the way they do it, technically, is different.

Depending upon the final position of the CSS property clear, it may globally affect the entire layout

or only locally, inside a parent container. An exact description is found in Section 2.6: How Floats

Work.

The overflow version is used in locations where the clearfix version would have undesirable effects

(i.e.: global effect of the clear property).

2.4 Structure of the XHTML Source Code

The goal of the YAML framework is to deliver a universally applicable, cross-browser consistent and

fully functional layout with all the necessary XHTML structures, independent of any content. In

particular, page creators have been given the freedom to choose fixed or flexible layouts and column

widths. Furthermore, a certain level of comfort is provided with the predefined commonly needed

elements and the usual design requirements built into the structure. The result is a universal source

code structure, which offers a multitude of easy modifications via CSS without changing the basic

markup. The source code structure is in the download package as an empty HTML file.

/yaml/markup_draft.html

http://www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/fileadmin/yaml/markup_draft.html

24 Basics

 24

2.4.1 Doctype Choice

The doctype XHTML 1.0 Transitional was chosen for the source code structure. You may certainly

change it if you wish: Strict XHTML or perhaps HTML 4.01 are completely compatible with the

framework should your content require them.

Standard Mode

In this mode, the browser interprets (X)HTML as it is defined by the W3C. Mistakes in the

(X)HTML code can cause major errors in presentation. However, this mode offers the

greatest possible assurance that a website will be consistent in all browsers.

Quirks Mode

This mode lets the browser tolerate much more invalid code and will always attempt to

produce a usable web page. This mode is used automatically, when the HTML document

specifies no Doctype, an outdated Doctype – or a misspelled one. Internet Explorer 5.x can

use no other mode than this.

The chosen Doctype's presentation mode is thus crucial for a correct display of the layout --

particularly in Internet Explorer. All the YAML CSS components, including the CSS hacks for Internet

Explorer, are based on the browser's using the standard-conform Standard Mode.

2.4.2 The Structure in Detail

Time to look at the fundaments of the YAML framework. Here is an excerpt from the file

markup_draft.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="de" lang="de">

<head> ... </head>

<body>

<div class="page_margins">

 <div class="page">

 <div id="header"> ... </div>

 <div id="nav"> ...</div>

 <!-- begin mainpart -->

 <div id="main">

 <!-- left column -->

 <div id="col1">

 <div id="col1_content" class="clearfix">

 ...

 </div>

 </div>

 <!-- right column -->

 <div id="col2">

 <div id="col2_content" class="clearfix">

 ...

 </div>

 </div>

25 Basics

 25

 <!-- middle column -->

 <div id="col3">

 <div id="col3_content" class="clearfix">

 ...

 </div>

 <!-- IE Column Clearing -->

 <div id="ie_clearing"> </div>

 </div>

 <!-- end mainpart -->

 </div>

 <!-- footer -->

 <div id="footer"> ... </div>

 </div>

</div>

</body>

</html>

The outermost DIV container .page_margins controls the width of the layout as a whole. It

contains all the following containers, and its parameters determine the maximum and minimum

widths of a flexible layout as well as the width of a fixed design.

In addition, this container together with the container .page can be used to create border visuals for

the layout - more on that later. Both containers are given the IE proprietary property hasLayout, in

order to avoid various CSS bugs, such as the Escaping Floats Bug when using horizontal menus on a

float basis. For more information, see Section 3.5: CSS Adjustments for Internet Explorer

Next are the containers for the #header, the main navigation #nav, as well as the main content area

#main with its three columns. The end of the file is: the #footer.

The red section of code labeled IE Column Clearings is one of YAML's special features. The meaning

and function of this container is thoroughly explained in Section 2.7: The Clearing of #col3.

The following layout example demonstrates the resulting 3-column-layout:

examples/01_layouts_basics/3col_standard.html

Important: starting with version 3.1 of the YAML frameworks, .page_margins became a CSS class
in order to allow its use more than once on a page. All earlier versions used the id #page_margins,
which could only be used one time.

http://www.positioniseverything.net/explorer/escape-floats.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://www.yaml.de/fileadmin/examples/01_layouts_basics/3col_standard.html

26 Basics

 26

2.4.3 Variations of the Markup

As demonstrated, the two CSS classes .page_margins and .page control the basic appearance of

the layout, by setting the total width as well as margins, borders, or backgrounds if necessary.

In the source code described above, the outermost DIV container .page_margins surrounds all the

other elements of the webpage. This results in a layout which in its simplest form is a rectangular box

against the background of the <body> element. This effect is not always desirable.

Alternatively, the classes .page_margins and .page can be used multiple times within a layout to

allow a background color or image to stretch horizontally across the entire viewport with only the

actual content within a rectangle of defined width. The following layout example demonstrates the

effect:

examples/07_layouts_advanced_2/fullpage_3col.html

To create this design, the nesting hierarchy of the code had to be changed. Here is an excerpt of the

header markup:

<div id="header">

 <div class="page_margins">

 <div class="page">

 ...

 </div>

 </div>

</div>

While in the standard version the container .page_margins contains all other elements, this

example changes the hierarchy so that #header becomes the outermost container and

.page_margins merely contains its contents – its width definitions thus only influence its contents.

The container #header itself, if not specifically restricted, will automatically stretch to fill the entire

viewport width and can be used to design the header area.

You can use this modification on any basic element of your layout (header, navigation, main, footer)

or just on specific areas, simply by having a common parent container of .page_margins surround

all the other elements, as in the standard layout. And of course you need only set the width for

.page_margins to set the width for the entire layout. As you have probably noticed, the (X)HTML

framework is extremely flexible.

2.4.4 Design Freedom with the Combination Model

The Box Model, which has existed since CSS 1, is clearly intended for use when working with fixed

measurements (i.e. pixels). The total width of a container is determined by the addition of the

individual components of the model: width, padding, and border.

When mixing units of measurement within a container (for example width:25%; padding: 0

10px;), it is no longer possible to calculate the total width of the container in advance. Design

freedom in composing flexible layouts is thus severely reduced.

http://www.yaml.de/fileadmin/examples/07_layouts_advanced_2/fullpage_3col.html

27 Basics

 27

Internet Explorer has a further problem with flexible column widths. When using Quirks Mode, it

interprets the CSS Box Model incorrectly. IE 6 can be set to present content in a standards-conform

manner with the use of the correct Doctype. However, YAML has always been designed to

completely support version 5.x of Internet Explorer, which only works in quirks mode.

In order to yet persuade IE to present the correct width, the Box Model Hack was developed -- along

with countless other variations of the hack. All variations have in common that they exploit the

parser bug to give IE a separate width, taking into account the false calculation, which then results in

a column with the correct width. Unfortunately, this method cannot correct for mixed units of

measurements, because of the problems described above. It is thus a further restriction on design

freedom.

The solution for all these problems lies in YAML's combination model for the basic layout - with two

nested DIV containers in each column.

<!-- begin: #col1 - first float column -->

<div id="col1">

 <div id="col1_content" class="clearfix">

 ...

 </div>

</div>

The total width of the column is assigned to the outer container #colx. The padding and optional

border go to the inner container colx_content, which has no defined width, but only

width:auto.

This means that the total width of the container #colx can always be determined. Any number of

combinations of various units of measurements are possible, which frees the design to flexible

layouts and simultaneously entirely avoids the IE box model bug.

2.5 Column Order in Source Code

Both columns #col1 and #col2 are floats. The third column, #col3, is a static container. The order

in which these three containers appear in the source code is not variable. The float objects (#col1

and #col2) must always come before the static object (the container #col3).

The CSS declarations of the float columns are in the file yaml/core/base.css:

#col1 {

 float: left;

 width: 200px; /* Standard value */

}

...

#col2 {

 float: right;

 width: 200px; /* Standard value */

}

http://www.w3.org/TR/REC-CSS2/box.html
http://www.tantek.com/CSS/Examples/boxmodelhack.html

28 Basics

 28

The basic layout floats the two column containers #col1 and #col2 to the left and right edges,

respectively, leaving #col3 to appear in the middle of this three-column layout.

As you can see in the XHTML structure, the individual columns are not nested in additional

containers (often called wrapper). All three column containers are within #main in the same

structural level, but both floated columns #col1 and #col2 are completely cut out of the normal

element flow. The static container #col3 then takes up the entire available width between them.

CSS must still specify a few more things so that the content in #col3 will not conflict with that in the

two float columns. The float columns are set to a standard width of 200 pixels. A 200 pixel wide outer

margin on #col3 in combination with its width:auto; forces its content into the alley between

the content of #col1 and #col2. The CSS declarations described here are in the file:

yaml/core/base.css.

#col3 {

 width:auto;

 margin-left: 200px; /* Standard value*/

 margin-right: 200px; /* Standard value */

}

Important: the order of containers #col1, #col2, and #col3 should remain unchanged in the
(X)HTML source code. Sort your content into column containers in the desired order. Their sequence
is completely independent of their display on the web page. Details are available in Section 4.4:
Variable Order and Use of Content Columns.

Now we've got the three containers #col1, #col2 and #col3 set up in our source code and

positioned with CSS. Only one question left: why are these three columns not nested inside #main?

The answer is in Section 2.7: The Clearing of Column #col3. Before we get to that, a small detour

along the way to visit float functionality.

http://www.yaml.de/en/documentation/basics/xhtml-source-code.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.yaml.de/en/documentation/basics/clearing-column-col3.html

29 Basics

 29

2.6 How Floats Work

When using floats, it is imortant to remember that when used in static elements, the CSS property

clear: left | right | both does not only affect its own location within the surrounding

element, but works globally - on all the floated elements on the page that share the same level in the

nesting hierarchy. This is easier demonstrated than explained: please see the file global_clear.html.

global_clear.html

Warning: Internet Explorer 5.x and 6.0 will have problems displaying this file. The IE float bugs have
not been fixed here. Please try another browser (Firefox, Safari, Opera ...).

2.6.1 Layout Preparation

First we must ensure that floated objects can be used freely within the columns. For this, the

eventual content must be completely contained within the static DIVs #col1_content,

#col2_content and #col3_content.

For this purpose, these three containers are given the CSS class .clearfix. The Clearfix hack

guarantees that all content (static and / or floats) is automatically enclosed. The definition of this

class is found in the file base.css.

/* Clearfix Method for clearing the floats */

.clearfix:after {

 content: ".";

 display: block;

 height: 0;

 clear: both;

 visibility: hidden;

}

/* This declaration is necessary for Safari!! */

.clearfix { display: block; }

Important: although the class .clearfix is only used on block-level elements in the YAML
framework, the Safari browser still needs the explicit declaration of display:block;. Otherwise
the container #col3_content becomes much too narrow. This value is redundant for all other
modern browsers, like Firefox or Opera.

As you can see, even while using the Clearfix Hack we're still using clear:both;. Within the float

columns #col1 and #col2, the clear property only works locally - just how we want it. Within the

static container #col3 however, clear:both works globally and ensures that the container

#col3_content lengthens to reach the lower edge of the longest float column. This behavior is

exactly what the YAML framework requires.

Unfortunately, Internet Explorer up to version 6 cannot deal correctly with the CSS pseudo-class

:after. The clearfix method is not completely ineffective in Internet Explorer. It is used within the

two containers #col1_content and #col2_content to enclose the content. A couple of

adjustments are necessary for IE. These hacks are centrally maintained in the file

yaml/core/iehacks.css. For more, see Section 3.5: CSS Adjustments for Internet Explorer.

http://www.yaml.de/fileadmin/static_pages/global_clear.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

30 Basics

 30

/*---*/

/* Workaround: Clearfix-Anpassung für alle IE-Versionen */

/*

** IE7 - x

*/

.clearfix { display: inline-block; }

/*

** IE5.x/Win - x

** IE6 - x

*/

* html .clearfix { height: 1%; }

.clearfix { display: block; }

/*--*/

As Internet Explorer cannot interpret the CSS pseudo-class :after, it ignores the property

clear:both; and does not clear globally within #col3. A special DIV container (#ie_clearing)

at the end of #col3 is necessary to force IE to clear. A detailed explanation is in the following

Section 2.7: The Clearing of #col3.

Note: a further source of information - especially regarding the technical functioning of floats and in
dealing with various browsers - please see the very thorough article "Grundlagen für Spaltenlayouts
mit CSS" by Mathias Schäfer on the SelfHTML-Weblog.

2.6.2 Preparing the Content

For the content, yet to come, we need a way to control the text flow within the static container

#col3 without triggering the global behavior of clear:both;. Within the floating columns #col1

and #col2, the use of this property is simple, as the clearing here generally only works locally within

the columns. Within #col3 , as discussed, the effect is global and would cause large vertical gaps.

Unless you can prevent it.

The solution is the overflow method, which also makes the encompassing of floats possible. The

overflow method works with the property overflow:hidden, so no conflicts with the clearing of

the columns arise. For the preparation of the content, YAML provides the CSS class .floatbox: its

use is explained in the following two examples.

The definition of the CSS class .floatbox is in the file base.css.

/* Clearing with overflow */

.floatbox { overflow:hidden; }

IE needs some help with the .floatbox too. Again, this is in the global IE adjustment file

iehacks.css (For more see Section 3.5: CSS Adjustments for Internet Explorer).

/* .floatbox adjustment for IE */

* html .floatbox {width:100%;}

The columns can now work with any floated objects. It may be useful to restrict the text flow to a

particular area, perhaps to the next section headline. This can prevent graphics from flowing into a

following but separate section.

http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://aktuell.de.selfhtml.org/weblog/css-spaltenlayout
http://aktuell.de.selfhtml.org/weblog/css-spaltenlayout
http://aktuell.de.selfhtml.org/weblog/
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

31 Basics

 31

For that, we need to nest the flowing content area, again using the CSS class .floatbox (based on

the overflow method). Two examples:

Example 1: a paragraph text should flow around a picture. The surrounding p tag is given the class

.floatbox. The text flow is then restricted to this particular paragraph -- no more HTML code is

necessary to stop the flow.

<p class="floatbox">

 This is the text of the paragraph which flows around the picture...

</p>

<p>Here the text flow has ended. This paragraph always begins below the

picture.</p>

Example 2: the text of several paragraphs should flow around a picture. The flow should stop before

the next subheading.

The corresponding section is nested in a special DIV container with the class="floatbox". Within

this DIV container, objects can be placed at will with float:left or float:right:

...

<h2>Subheading 1</h2>

<div class="floatbox">

 <p> ... a paragraph ...</p>

 <p> ... a second paragraph ...</p>

 <p> ... and another paragraph in the flow of text. </p>

</div>

<h2>Subheading 2</h2>

...

The flow of text is restricted to the DIV container by the nesting, and needs no extra HTML code with

clear:both; .

32 Basics

 32

2.7 The Clearing of #col3

The previous section explained the global behavior of clear:both; and its effects within the static

container #col3. Though this effect would be counterproductive for the position of content within

#col3, YAML specifically exploits this effect to consistently make #col3 the longest column in the

layout -- independent of the amount of content in the other columns.

The goal of these efforts to use the CSS border property of #col3 to create vertical column

separators (solid, dashed, or dotted lines) or even solid color column backgrounds for the float

columns without using graphics. Because of the global clearing, these will always reach to the

#footer. This profides an alternative method of designing the graphic layout, which is also

extremely easy to edit.

2.7.1 Global Clearing Makes #col3 the Longest Column

How does #col3 become the longest column? In all modern browsers (Mozilla, Firefox, Opera etc.),

this happens without any further ado. As #col3 is a static container, the clearing of

#col3_content via the clearfix class works globally and forces #col3 to stretch to the lowest

end of the longest float column. More on the functioning of the clearfix class in Section 2.6: How

Floats Work.

2.7.2 Special Clearing Solution for Internet Explorer

The global clearing via clearfix does not work in IE, as it does not recognize the CSS pseudo-class

:after, which contains the property clear:both; . Additional HTML must be added to the end of

#col3 to contain it again: this is done with an invisible DIV.

...

<!-- IE column clearing -->

<div id="ie_clearing"> </div>

...

Let us take a close look at this invisible DIV. As mentioned, this container is only required for IE. For

modern browsers, it is turned off completely. The necessary declarations are in the file base.css in

the folder yaml/core/:

/* IE-Clearing: ... */

#ie_clearing { display: none }

The adjustment in the properties of this particular clearing DIV for IE are in the file iehacks.css in the

yaml/core/ folder:

#ie_clearing {

 display:block; /* DIV made visible */

 \clear:both; /* Normal clearing for IE5.x/Win */

http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html

33 Basics

 33

 width: 100%; /* IE Clearing with 100% DIV for IE 6 */

 font-size:0;

 margin: -2px 0 -1em 1px; /* IE clearing with extra-large DIV for IE7 */

}

* html { margin: -2px 0 -1em 0; }

#col3_content { margin-bottom: -2px; }

/* (en) avoid horizontal scrollbars in IE7 ... */

html { margin-right: 1px; }

* html { margin-right: 0; }

/* (en) Bugfix: Essential for IE7 */

#col3 { position:relative; }

IE Clearing in Internet Explorer 5.x

display:block turns the DIV on. Then the actual clearing begins: with \clear:both. The leading

backslash exploits the IE 5.x and 6.0 parser bug, which ensures that the property will only be

understood by Internet Explorer 5.x.

Important: this is the standard method for clearing float environments. Unfortunately a particularly
tricky bug turns up in Internet Explorer v5.x to v7, which under certain circumstances can lead to the
collapsing of the left margin of #col3. More information on this in Section 5.3: Known Problems -
Internet Explorer. This bug cannot be fixed in IE 5.x, so the regular clearing is still used for this
browser version.

For Internet Explorer 6 and 7, we use a special clearing method, which prevents the bug from
appearing.

IE Clearing in Internet Explorer 6.0

The clearing solution bases on the fact that within #col3, Internet Explorer will break too-large

elements beneath the float columns. The DIV container #ie_clearing is defined with width:

100% in IE6 to force this. As the float columns will still restrict the space remaining to less than 100

percent, the container must break under the float columns.

IE Clearing in Internet Explorer 7.0

IE7 needs a box with a width of over 100 percent. The container, therefore, also needs an additional

left margin of 1 pixel (margin: -2px 0 -1em 1px). But Internet Explorer 7 has a bug that makes

this overlapping pixel - which has no significance for the layout - to cause horizontal scrollbars when

used with whole-page layouts (body, .page_margins and .page at 100% width and no border). To

catch this case, the HTML element html receives a 1 pixel wide margin on the right side.

/* Avoiding horizontal scrollbars for layouts with too-large content in

IE7*/

html {margin-right: 1px}

* html {margin-right: 0}

This trick prevents horizontal scrollbars and the extra 1 pixel wide edge next to the vertical scrollbar

in IE7 is usually not even noticed.

http://www.yaml.de/en/documentation/tools-tips/known-problems.html
http://www.yaml.de/en/documentation/tools-tips/known-problems.html

34 Basics

 34

Now one more helpful hint for Internet Explorer 7. The container #col3 has to be assigned the

property position:relative. Without it, Internet Explorer 7 would ignore the container

#ie_clearing.

Hiding Clearing Containers in Layouts

The margins in the other directions margin: -2px 0 -1em 1px are only to make the container

optically invisible in all IE versions. To make it definitively invisible, the font size was set at 0. The

height of the container then shrinks to 2 pixels. These last two pixels are then canceled out by a

further negative margin in #col3_content. Now the DIV container is not visible in the layout, and

yet still fulfils its functions.

One last adjustment is necessary. The IE clearing only works as long as the column #col3 is not

given the proprietary property hasLayout. bekommt. Yet exactly that is called for when, for example,

removing the 3 pixel bug (see Section 3.5: CSS Adjustments for Internet Explorer). In this case, the

column dividers cannot be used. Still, the columns must be cleared correctly, in order to place the

footer beneath them. This is done easily by also giving the container #footer in the file base.css the

property clear:both;.

2.7.3 Graphic-Free Column Divider

Done: now we can use the CSS property border of #col3 for vertical column dividers and / or solid

color column backgrounds for #col1 and #col2, which go all the way down to the footer. All

without a single graphic. As an example, we can construct a vertical dotted line:

#col3 {

 border-left: 2px #eee dotted;

 border-right: 2px #eee dotted;

}

You want proof that it works? Here you go:

/examples/04_layouts_styling/3col_column_dividers.html

Detailed descriptions of examples of these techniques are in Section 4.2: Designing the Columns.

Note: the use of this technique is only recommended in combination with a column setup with
#col3 in the middle, i.e. 1-3-2 and 2-3-1 or when using two column layouts. More information on
variable column order is found in Section 4.4: Variable Column Order.

When using the column order 1-2-3 / 3-2-1 or 2-1-3 / 3-1-2, this technique is not so useful, as IE will
not stretch #col3 to the height of the longest float column. With these layout variants, please use
the "Faux Columns" technique for defining vertical column dividers.

This closes the explanation of the structure of YAML's XHTML source code and the functions of the IE

clearings. The foundation is set. The last bit of the source code structure is the skip links, which are

explained in the following section.

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://www.yaml.de/fileadmin/examples/04_layouts_styling/3col_column_dividers.html
http://www.yaml.de/en/documentation/css-components/design-of-the-content.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.alistapart.com/articles/fauxcolumns/

35 Basics

 35

2.8 Skip Link Navigation

Skip-links improve the usability of a website most of all for those users who are dependent upon a

screen reader. Screen readers linearize the content of a website and read it aloud from beginning to

end. Skip-links should be as close to the beginning of the source code as possible and provide links to

the most important areas within the web page (navigation, content, etc.).

This of course invites the discussion of wheter it is not better to simply place the content of the

website as close to the beginning of the source code as possible -- and place the navigation further

down. This would let the user arrive at the content more quickly, without having to listen to the

navigation links be read aloud on every single page.

But - what if the user does not want to read the content? The user might well merely want to visit a

further subarea of the navigation. It would then be quite frustrating to have to go through the entire

content before getting to the navigation. Clearly, there is no perfect placement of the content in the

source code. More practically, we need to help the users get quickly to the kind of content they

need. Skip-links are a very simple and effective tool.

2.8.1 Skip Link Navigation in the YAML Framework

The skip links in YAML's source code are located just after the opening BODY tag. In general, they

should be placed before all other content. Two skip targets are defined: The first skiplink passes

further content in #topnav and #header and leads directly to the main navigation in #nav. The

second skip link leads directly to the main content of the website, in this case to #col3.

Here is the associated markup. Skip-links are created as an unordered list with the ID #skiplinks.

This class is defined in the base.css (see Section 3.3) and controls the visual properties of the list.

Furthermore, each link in the list get's the CSS class .skip.

<!-- skip link navigation -->

<ul id="skiplinks">

 Skip to navigation (Press

Enter).

 Skip to main content (Press

Enter).

Alternatively, you can integrate the skip links directly into their layout. The unordered list is optional.

To ensure the functionality, only the CSS class .skip is required for skip anchors. The following

example shows the placement of the skip links before the meta navigation in #topnav.

<div id="header">

 <div id="topnav">

 Skip to navigation (Press Enter).

 Skip to content (Press Enter).

 ...

 </div>

 ...

</div>

http://www.yaml.de/en/documentation/css-components/base-stylesheet.html

36 Basics

 36

Existing IDs within the layout serve as skip targets in both of these examples. You can use any ID as

an anchor in the href attribute of your skip links. Alternatively - although not often done today - you

can use named anchors as skip targets. In this case, the skip target must have identical values for

both the id and name attributes to ensure backwards compatibility (i.e. <a id="content"

name="content">).

Invisible and Accessible

Users without disabilities who use the internet with standard browsers generally do not need this

navigational help. For this reason, the skip links are invisible in the print and normal screen views.

However, the links cannot be hidden with the css property display:none; that is interpreted by

screen readers and such content is not read aloud. The skip links would then be unusable.

Furthermore, skip links have to become visible on focus to provide visual feedback for those users

navigating with a keyboard.

The CSS definitions required are located in the CSS file base.css (see section 3.3: Base Stylesheet) and

are always available via the ID #skiplinks (invisible list) and .skip (skip anchor).

 /**

 * @section hidden elements | Versteckte Elemente

 * @see www.yaml.de/en/documentation/basics/skip-links.html

 *

 * (en) skip links and hidden content

 */

 /* (en) classes for invisible elements in the base layout */

 .skip, .hideme, .print {

 position: absolute;

 top: -32768px;

 left: -32768px; /* LTR */

 }

 /* (en) make skip links visible when using tab navigation */

 .skip:focus,

 .skip:active {

 position: static;

 top: 0;

 left: 0;

 }

 /* skiplinks: technical setup */

 #skiplinks {

 position: absolute;

 top: 0px;

 left: -32768px;

 z-index: 1000;

 width:100%;

 margin: 0;

 padding: 0;

 list-style-type: none;

 }

 #skiplinks a.skip:focus,

 #skiplinks a.skip:active {

 left: 32768px;

http://www.yaml.de/en/documentation/css-components/base-stylesheet.html
http://www.yaml.de/en/documentation/basics/skip-links.html

37 Basics

 37

 outline: 0 none;

 position: absolute;

 width:100%;

 }

After the general definition, the visual presentation of the links must be determined by the

webdesigner. The layout examples included are shaped by the rules in the basemod.css.

 /**

 * Skiplinks

 *

 * (en) Visual styling for skiplink navigation

 * (de) Visuelle Gestaltung der Skiplink-Navigation

 *

 * @section content-skiplinks

 */

 #skiplinks a.skip:focus,

 #skiplinks a.skip:active {

 color:#fff;

 background:#333;

 border-bottom:1px #000 solid;

 padding:10px 0;

 text-decoration:none;

 }

Further reading: Jim Thatcher's "Skip Navigation" article gives a very good overview of various

methods of skip link presentation.

This helpful navigational method can be expanded through the use of further skip targets. Such

expansion is entirely up to the individual webdesigner and should be undertaken only after thorough

consideration.

Correcting Focus Problems in Webkit Browsers

Although there are no problems with the visual presentation of skip links, Webkit-based browsers

such as Safari and Google Chrome require a focus bugfix. In these browsers, the skip target is

reached (the target is displayed in the visual area of the viewport), but the tab focus remains on the

skip link and not on the target. If the user tabs again, the focus jumps back to the beginning of the

document, to the anchor or element which immediately follows the activated skip link.

YAML provides a script which finds all the skip links in a document, analyzes the targets, and

automatically sets the focus to the target anytime one of the links is clicked.

The JavaScript file webkit-focusfix.js is in the folder /yaml/core/js/.

<!-- full skip link functionality in webkit browsers -->

<script src="./yaml/core/js/webkit-focusfix.js"

type="text/javascript"></script>

</body>

To prevent possible performance problems in high-traffic sites, the script is included just before the

closing BODY tag in the layout samples and in the file markup_draft.html.

http://www.jimthatcher.com/skipnav.htm

38 CSS Components

 38

3 CSS Components
3.1 The CSS Concept

YAML's CSS concept is modular and cascading. The CSS definitions of the basic layout are divided

according to function into several separate CSS components (files):

 Positioning of the main areas of the web page (header, footer, columns)
 Screen layout: design of the main areas
 Formatting of the content
 Design of the navigational elements
 Print templates

The finished layout always comprises several of these components. The separation according to

function makes editing and organizing easier.

Furthermore, regular CSS is strictly separated from those files necessary for Internet Explorer hacks

(bugfixes for CSS bugs). Many of these bugfixes exploit other IE parser bugs, which let IE accept

invalid or incorrect CSS declarations.

Only in rare cases can regular CSS be mixed with the IE bugfixes and still validate. The hacks also

interfere with the legibility of the stylesheets. A summary of these hacks in one single file allows

better comprehension regarding the various IE browser versions, which themselves sometimes

need varying hacks.

3.1.1 Cascading

In addition to the thematic organization of the style listings in various CSS components, YAML uses

the cascading of CSS quite intensively.

Cascading lets the browser decide, which CSS properties are relevant for the display of any particular

element. This cascade is divided into four steps:

 Step 1: origin of the declarations
(browser, author, or user stylesheet).

 Step 2: sorting by origin and weight
 Step 3: sorting by selector specificity
 Step 4: sorting by order of appearance

With the CSS basic components (base.css and iehacks.css), the page creator is presented with a

three-column basic layout as a basis. These stylesheets are integrated into each YAML-based layout

and are never changed.

The basic layout can then be modified by overwriting specific style declarations and expanding other

properties. All the page creator's changes should be made in separate stylesheets: only then can

YAML remain the stable basis at the lowest level.

39 CSS Components

 39

3.2 Naming Conventions

Certain terms are used again and again within the documentation, as well as in the naming of files

and folders of the framework. A short definition of these:

3.2.1 Basic components (core files)

The core files comprise the core or the foundation of the YAML framework and are in the folder

yaml/core/.

They provide the basic functionality of the framework and are necessary for the cross-browser

uniform layout presentation. They are necessary for every YAML-based layout.

3.2.2 Complementary components

YAML is based on the cascade principle. The actual layout design is created by modifying YAML's

basic layout. In addition, YAML provides several more finished CSS components as well as templates

for often-required elements. These modules are organized by function:

 Screen layout - screen/
 Print layout - print/
 Navigation - navigation/

Should these files be used unchanged, they need only be copied directly into the layout from the

folder yaml/. Separate, new stylesheets or modification of these components should be maintained

in a new css folder.

3.2.3 Patches

A patch file contains all the necessary CSS adjustments for Internet Explorer together in one CSS file.

This is integrated into the (X)HTML source code with a conditional comment and ensures a

homogeneous layout.

3.2.4 File templates

YAML offers file templates for oft-required components. These templates have names ending in

_draft..

To use them with YAML, copy those you need into your css folder and rename them.

40 CSS Components

 40

3.3 The Central Stylesheet

YAML's CSS concept is based, as discussed previously, on modules as well as on the cascade principle.

The CSS components are composed according to function (positions of the layout elements,

formatting of content, etc.)

The following diagram shows the functions and meaning of the YAML framework's individual

components.

Every YAML-based layout contains such a central stylesheet, which integrates all the required

components for that layout (basic components, screen layout, navigation, print styles). A complete

layout always comprises several of these components. This separation according to function makes

editing and comprehension easier.

How do we start actually working with YAML?

3.3.1 Integration & Import of the CSS Components

The structure of the central stylesheet -- and thus the use of YAML in your own projects -- is easiest

explained through examples.

Note: copy the folder yaml from the download package onto your server, on the same level as your
css folder. This separation between your own css files and the files of the framework is necessary to
let you update YAML at any time.

41 CSS Components

 41

The layout is integrated into the (X)HTML source code via a so-called central stylesheet, which is

usually reached with the link element in the HTML head of each web page.

<head>

...

<link href="css/layout_3col_standard.css" rel="stylesheet"

type="text/css"/>

...

</head>

This central stylesheet contains your layout and should be placed in your css folder. Within this

stylesheet, the other necessary CSS components are integrated with the @import rule.

/* import core styles | Basis-Stylesheets */

@import url(../yaml/core/base.css);

/* import screen layout | Screen-Layout einbinden */

@import url(../yaml/navigation/nav_shinybuttons.css);

@import url(screen/basemod.css);

@import url(screen/content.css);

/* import print layout | Druck-Layout einbinden */

@import url(../yaml/print/print_003_draft.css);

As you can see, the first stylesheet is the most basic of the YAML framework: base.css. It is loaded

directly from the yaml/core/ folder.

In the second step, the screen layout is put together. A stylesheet for the navigation is loaded:

nav_shinybuttons.css. This should remain unchanged, so again, the link is directly to the yaml folder.

The screen layout and the content design is up to you: those files should be saved to your own css

folder.

The third and last step connects the print layout, also available as YAML prefabricated components.

In this example, one of these files (print_003_draft.css) is directly linked from the yaml/print/ folder,

without customization.

Important: the basic principle of separation of your custom CSS files from the YAML files has many
advantages, borne out by practical use.

If you want to make changes to any files of the framework or use any of the file templates, copy the
file to your css folder and do not work with the original.

Unchanged original components should be imported directly from the yaml folder into your layout.
When updating the framework, you need then only overwrite the yaml folder.

42 CSS Components

 42

3.3.2 Adjustments for Internet Explorer

All modern browsers (Firefox, Safari, Opera, etc.) have their CSS needs met with the central

stylesheet linked from the (X)HTML source code. Only Internet Explorer needs extra CSS adjustments

to be able to display YAML-based CSS layouts. These are integrated into the framework with a so-

called conditional comment.

<head>

...

<!--[if lte IE 7]>

<link href="css/patches/patch_3col_standard.css" rel="stylesheet"

type="text/css" />

<![endif]-->

</head>

This is a special comment, which is only understood and interpreted by Internet Explorer. It allows IE

to access a specially created stylesheet which no other browser will see. In the example above, this is

the file patch_3col_standard.css, which contains all CSS modifications for IE.

More on these functions in Section 3.5: CSS Adjustments for Internet Explorer. For all other browsers,

this is a normal HTML comment, and they ignore its content.

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

43 CSS Components

 43

3.4 The Base Stylesheet base.css

Important: The stylesheet base.css in the folder yaml/core/ is one of the basic components of the
YAML framework. It sets up the foundation (browser reset, clearing, subtemplates etc.). This
stylesheet is required for every YAML-based layout and should not be changed lightly!

3.4.1 Browser Reset - Uniform Starting Point for All Browsers

Note: the components of the browser reset are required for all media. The following CSS rules are
thus included with the media rule @media all.

YAML's purpose is to guarantee a uniform and cross-browser compatible layout. A uniform starting

point is necessary. This is not a given: every browser sets its own particular standard formats for

displaying unformatted content.

Let us examine the first lines of the base stylesheet base.css:

/**

* @section browser reset

* @see ...

*/

* { margin:0; padding:0; }

option {padding-left: 0.4em}

* html body * { overflow:visible }

* html iframe, * html frame { overflow:auto }

* html frameset { overflow:hidden }

html { height: 100%; margin-bottom: 1px; }

body {

 font-size: 100.01%;

 position: relative;

 color: #000;

 background: #fff;

 text-align: left;

}

div { outline: 0 none; }

fieldset, img { border:0 solid; }

ul, ol, dl { margin: 0 0 1em 1em; }

li {

 margin-left: 0.8em;

 line-height: 1.5em;

}

dt { font-weight: bold; }

dd { margin: 0 0 1em 0.8em; }

blockquote { margin: 0 0 1em 0.8em; }

blockquote:before, blockquote:after,

q:before, q:after { content: ""; }

44 CSS Components

 44

Eliminating margins and paddings

Setting * { margin:0; padding:0; } eliminates the inner and outer spacing of all HTML

elements via the asterisk selector. This method takes care of all HTML elements at one go.

For select elements, however, this creates a small problem. The above instruction of course sets

the padding of the option element (the choices in the selectbox) to zero, causing it (in Windows) to

hide the last letter of the content. This problem is solved by setting its standard value explicitly:

option {padding-left: 0.4em}.

Note: the entry can be completed with the CSS property * {border: 0;}. However, this also
removes the preformatting of form elements -- textareas and submit buttons.

In this case, these elements must be formatted with the standard values in the CSS file content.css
(see Section 3.8: Designing the Content), or they will be quite difficult to see on the screen.

To avoid a permanently visible outline of DIV elements div {outline: 0 none;}. This occurs when its

ID's are used as targets for skip links. The rule doesn't affect other browsers due to their identical

default behavior.

The border for the HTML elements fieldset and img are also set to zero (fieldset, img {

border:0 solid; }).

Avoiding the italics bug in IE

This bugfix for Internet Explorer 5.x and 6.0 is an exception. While all YAML's further CSS hacks for IE

are collected in special stylesheets, this bugfix must appear before all layout-specific CSS declarations

to work properly.

* html body * { overflow:visible }

* html iframe, * html frame { overflow:auto }

* html frameset { overflow:hidden }

An exact description of this bugfix is in Section 3.5: CSS Adjustments for Internet Explorer.

Font size and rounding errors

The declaration body { font-size: 100.01% } compensates rounding errors, in particular in

older versions of Opera and Safari. Both would otherwise display fonts that are too small.

Note: in earlier YAML versions, this font size correction was also included for the elements select,
input, and textarea for Safari 1.x. This led to problems in the current Firefox 2.x and will not be
used after YAML version 3.0. Safari 1.x is also seldom used today.

Standard values for lists and quotations

HTML lists as well as elements for designating quotations (blockquote, ol, ul, dl) need line

heights and margins in order to be consistent in all browsers. The browser's own interpretations

were overwritten with the declaration * {margin:0; padding:0 } along with the other browser

resetting options.

ul, ol, dl { margin: 0 0 1em 1em; }

li {

http://www.yaml.de/en/documentation/css-components/design-of-the-content.html
http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html

45 CSS Components

 45

 margin-left: 0.8em;

 line-height: 1.5em;

}

dt { font-weight: bold; }

dd { margin: 0 0 1em 0.8em; }

blockquote { margin: 0 0 1em 0.8em; }

blockquote:before, blockquote:after,

q:before, q:after { content: ""; }

3.4.2 Standard CSS Classes

Note: the components of the standard classes are necessary for all media. The following CSS rules
are thus included with the media rule @media all.

YAML provides many standardized CSS classes to be used when required. These classes are

discussed briefly.

Clearing Methods

YAML provides two general methods for clearing floats without additional markup. These are the

clearfix and the overflow methods. Their technical details were discussed in section 2.3. Practical use

scenarios for each method were described in section 2.6.

 /**

 * @section clearing methods

 * @see yaml.de/en/documentation/basics/general.html

 */

 /* (en) clearfix method for clearing floats */

 /* (de) Clearfix-Methode zum Clearen der Float-Umgebungen */

 .clearfix:after {

 clear: both;

 content: ".";

 display: block;

 font-size: 0;

 height: 0;

 visibility: hidden;

 }

 /* (en) essential for Safari browser !! */

 /* (de) Diese Angabe benötigt der Safari-Browser zwingend !! */

 .clearfix { display: block; }

 /* (en) overflow method for clearing floats */

 /* (de) Overflow-Methode zum Clearen der Float-Umgebungen */

 .floatbox { overflow: hidden; }

Section 2.7 described how within YAML the container #col3 can consistently remain the longest

column by using the clearfix method. Internet Explorer requires many adjustments for this function,

which are provided by the container #ie_clearing. The adjustments for IE 5.x – IE 7.0 are included

via the iehacks.css. The container #ie_clearing is generally hidden in modern browsers, as they

do not require it.

http://www.yaml.de/en/documentation/basics/general.html
http://www.yaml.de/en/documentation/basics/how-floats-work.html
http://yaml.de/en/documentation/basics/general.html

46 CSS Components

 46

/* (en) IE-Clearing: Only used in Internet Explorer ... */

#ie_clearing { display: none; }

Skip Links and Invisible Content

In order to provide the most easily accessible webpages, YAML offers predefined CSS classes in the

base.css to hide content from the visual screen and yet make it available to print versions and

alternative media such as screen readers.

 /**

 * @section hidden elements | Versteckte Elemente

 * @see www.yaml.de/en/documentation/basics/skip-links.html

 *

 * (en) skip links and invisible content

 */

 /* (en) classes for invisible elements in the base layout */

 .skip, .hideme, .print {

 position: absolute;

 top: -32768px;

 left: -32768px; /* LTR */

 }

 /* (en) make skip links visible when using tab navigation */

 .skip:focus, .skip:active {

 position: static;

 top: 0;

 left: 0;

 }

 /* skiplinks: technical setup */

 #skiplinks {

 position: absolute;

 top: 0px;

 left: -32768px;

 z-index: 1000;

 width:100%;

 margin: 0;

 padding: 0;

 list-style-type: none;

 }

 #skiplinks a.skip:focus,

 #skiplinks a.skip:active {

 left: 32768px;

 outline: 0 none;

 position: absolute;

 width:100%;

 }

The definition of the CSS class .skip for providing predefined skip links was explained in section 2.8:

Skip-Link Navigation. Further standard classes were developed to display content only to particular

media (for example, to provide additional information for screen readers).

The class .hideme hides content from all visual media. The CSS class .print allows content to be

hidden from screens and yet printed onto paper. Both classes are fully accessible to screen readers.

http://www.yaml.de/en/documentation/basics/skip-links.html
http://www.yaml.de/en/documentation/basics/skip-links.html
http://www.yaml.de/en/documentation/basics/skip-links.html

47 CSS Components

 47

3.4.3 Building Blocks for the Screenlayout

YAML works on the top-down principle, providing a

basic markup with often-used standard elements of

common layouts.

 .page_margins serves as a wrapper for a
particular layout area. Usually the layout width
or the minimum and maximum widths of a
flexible layout are set via .page_margins.

 .page defines the borders of and space around
flexible layouts in relation to .page_margins (see
the combination model, Section 2.4).

 #header, #nav, #main und #footer are
typical standard elements for all layouts.

 In addition to the main navigation, many pages
include a "metanavigation", which contains links
to the sitemap, the privacy policy, etc. The
container #topnav is intended for this.

 Within #main there are three column
containers:

o #col1 & #col1_content
o #col2 & #col2_content
o #col3 & #col3_content + #ie_clearing

The column containers are each divided into two, in order to allow for the greatest possible

flexibility and freedom in designing flexible layouts with the combination model.

Basic Layout - Universal Fallback

The predefined elements in the markup can always be freely redesigned, but basic values are set

within the base.css to provide a fallback to a simple three-column layout. In this basic layout, the side

columns #col1 and #col2 are each defined as 200px wide. The metanavigation #topnav is

positioned absolutely at the top right within #header.

The position:relative property for the content container #colx_content is a preparatory

step to allow absolute positioning within the columns. It also ensures that Internet Explorer's column

contents appear without selection or changing the size of the window, and they are prevented from

suddenly disappearing.

#header { position:relative; }

#topnav { text-align: right; }

#header #topnav { position:absolute; top: 10px; right: 10px; }

/* (en) Ensuring correct positioning */

#header, #nav, #main, #footer { clear:both; }

#col1 { float: left; width: 200px; }

#col2 { float:right; width: 200px; }

#col3 { width:auto; margin: 0 200px; }

#col1_content, #col2_content, #col3_content { position: relative; }

http://www.yaml.de/de/dokumentation/grundlagen/der-xhtml-quelltext.html

48 CSS Components

 48

This fallback means that you never face designing your new screen layout with a completely blank

slate: even in the worst case scenario, you can always call up a fully-functioning basic layout.

Flexible Grid Blocks

The base.css also contains the class definitions for the flexible grid blocks, YAML's subtemplates. The

functions and structure of the subtemplates is covered thoroughly in Section 4.5.

3.4.4 Specifications for the Print Version

Note: the following CSS rules for the print version are grouped within the media rule @media
print.

Float Clearing in the Print Version

Both Firefox and Internet Explorer still have some problems in their current versions with accurate

printing of floated elements, even when using the overflow:auto or overflow:hidden

properties. A part of the content is arbitrarily cut off. Particularly problematic is the standard class

.floatbox. The following bugfix solves this problem. Simultaneously, the display:table

property ensures that floating content remains within the surrounding parent containers.

 /**

 * (en) float clearing for .floatbox and subtemplates.

 *

 * @bugfix

 * @since 3.0

 * @affected FF2.0, FF3.0, IE7

 * @css-for all browsers

 * @valid yes

 */

 .subcolumns > div,

 .floatbox {

 display: table;

 overflow:visible;

 }

In addition to .floatbox, the bugfix is also applied to the selector .subcolumns > div. This is a

preventive measure to ensure that the content of the subtemplates remains within its surrounding

column container .cxxl or .cxxr.

Adjusting the print version for specific content

The CSS class .print is defined along with the skip link classes (see Section 2.8) in order to hide

elements on screen while leaving them accessible for screen readers and in the print version. The

following rule makes elements with the .print class visible.

/* (en) make .print class visible */

/* (de) .print-Klasse sichtbar schalten */

.print { position: static; left: 0; }

In general, you should hide elements from your print version with your print stylesheet and CSS. Yet

there is no rule without exceptions, and not every element in a complex, dynamic layout can be

http://www.yaml.de/de/dokumentation/anwendung/subtemplates.html
http://www.yaml.de/de/dokumentation/grundlagen/skip-links.html

49 CSS Components

 49

reliably reached with CSS selectors. For such cases, we have the CSS class .noprint. This class hides

content from the print version, but must be specifically assigned to such content in the markup.

/* (en) generic class to hide elements for print */

/* (de) Allgemeine CSS Klasse, um Elemente in der Druckausgabe auszublenden

*/

.noprint { display:none !important; }

50 CSS Components

 50

3.5 CSS Adjustments for Internet Explorer

Internet Explorer since Version 5 has integrated broad support for CSS 1 and good support for CSS 2.

Unfortunately the CSS 2 support in particular is riddled with mistakes, which ignored quickly lead to

display errors in CSS layouts.

The source code structure of the YAML basic layout is set up to allow many variations via CSS without

changing the HTML code. To ensure this flexibility, we must iron out the numerous IE CSS bugs.

The CSS bugs in IE occur in connection with specific source code constructs relating to combinations

of floating, positioned, and static elements. As the YAML framework's code is fixed and its variations

are known, most of the bugs are predictable and thus manageable.

The bugs are categorized according to their manifestation, and are dealt with separately:

Structure- and layout-independent adjustments

Most of the CSS bugs are easily managed from within the XHTML source code. When such

bugfixes are compatible with all possible modifications and column orders, it qualifies as

structure- or layout-independent.

All these are managed in one stylesheet, iehacks.css in the folder yaml/core/, which should

not be modified.

Layout dependend adjustments

Some CSS bugs are only triggered by particular layouts. These problems cannot be dealt with

by the standard structure, but must be handled individually by the site's designer and are

categorized as structure- or layout-dependent - especially as they are often triggered by the

display of particular content elements.

Every YAML-based layout should include a hack file patch_[layout].css for Internet Explorer,

replacing the placeholder [layout] in the filename to match the relevant central stylesheet. A

template for such a hack stylesheet (patch_layout_draft.css) is in the yaml/patches/ folder.

Structure of the CSS Patch File for Internet Explorer

As described above, every YAML-based layout (or every central stylesheet, see Section 3.3) requires

an IE patch file patch_[layout].css. The structure of such stylesheets is described below, using the

example of the template file patch_layout_draft.css from the yaml/patches/ folder.

/* Layout independent adjustments ----------- */

@import url(/yaml/core/iehacks.css);

/* Layout dependent adjustments ------------- */

@media screen, projection

{

 /* add your adjustments here | Fügen Sie Ihre Anpassungen hier ein */

 ...

}

As you can see, this file includes both layout-dependent and -independent adjustments. You need

then only integrate one additional CSS file into your layout.

http://www.yaml.de/en/documentation/basics/xhtml-source-code.html
http://www.yaml.de/en/documentation/css-components/the-central-stylesheet.html

51 CSS Components

 51

The first section imports the file iehacks.css from the core/ folder of the YAML framework. As

previously mentioned, this file contains all the structure- and layout-independent bugfixes and can

thus be integrated unchanged into every YAML-based layout.

The second part contains an empty @media rule. After this you can integrate further IE stylesheets

(the navigation component nav_vlist, for example). Furthermore, this is the place to add the

structure- or layout-dependent bugfixes or bugfixes for the correct display of layout elements.

This IE adjustment stylesheet then takes care of similar issues as the central stylesheet: all CSS hacks

are collected and presented to Internet Explorer.

Integration of the CSS Adjustments in YAML's Layout

Many bugfixes exploit IE's numerous parser bugs - particularly those in older IE versions. The

resulting CSS code is therefore not always valid and should thus only be made accessible to IE. This is

possible with the use of conditional comments within the HTML head <head>..</head>. This was

already mentioned at the end of Section 3.3: The Central Stylesheet.

...

<!--[if lte IE 7]>

 <link href="css/patches/patch_col3_standard.css" rel="stylesheet"

type="text/css" />

<![endif]-->

</head>

The condition lte IE 7 means "lower than or equal to Internet Explorer Version 7.0". This special

comment is only recognized and interpreted by IE - for all other browsers, it is a normal comment,

and they ignore its contents.

In the following, all layout-relevant IE CSS bugs will be explained and their YAML framework fixes /

workarounds described.

3.5.1 Structure- and Layout-Independent Bugfixes

All structure- and layout-independent bugfixes for IE's CSS bugs are collected in the file iehacks.css in

the yaml/core/ folder.

Important: the stylesheet iehacks.css from the yaml/core/ folder is one of the core components of
the YAML framework. It contains all the structure- and layout-independent bugfixes for IE (versions
5.x/Win - 7.0/Win). These corrections are essential for the strength and error-free presentation of
YAML-based layouts in Internet Explorer. This stylesheet is required in every YAML-based layout and
should remain unchanged!

Fundamental CSS Adjustments

YAML recommends forcing modern browsers (IE8, Firefox, Safari, ect.) to always display vertical

scrollbars via CSS3 property overflow-y (see Section 3.6). In older Internet-Explorer versions, this

workaround are not required, as the scrollbars are always displayed.

http://www.yaml.de/en/documentation/css-components/the-central-stylesheet.html#c155
http://www.yaml.de/en/documentation/css-components/design-of-the-screen-layout.html

52 CSS Components

 52

/**

 * (en) No need to force scrollbars in older IE's ...

 *

 * @workaround

 * @affected IE6, IE7

 * @css-for IE6, IE7

 * @valid no

 */

body { o\verflow:visible; }

The next declaration is important for Internet Explorer 7, which has problems when zooming in on

YAML-based layouts.

body { position:relative }

* html body { position:static}

#main{ position:relative }

The relative positioning of the body solves nearly all IE 7's zoom problems. The container #main also

gets this property. This avoids wrong positioning of columns after resizing the browser window while

using IE-Expressions.

Adjusting Clearing Methods for IE

The CSS adjustments for the clearfix clearing are based on work done by Roger Johansson and are

already compatible with IE 7.

/* Clearfix Adjustments / Anpassungen für Clearfix-Methode */

.clearfix { display: inline-block; }

.clearfix { display: block; }

* html .clearfix { height: 1%; }

/* Overflow Adjustments / Anpassungen für Overflow-Methode */

.floatbox { width:100%; }

The second part deals with the CSS class .floatbox, in which the overflow method is integrated into

YAML. All IE versions are given the property hasLayout with the width, causing them to react

properly to this clearing method. For the older versions (5.x and 6.0) this is essential, for IE7 it's a

saveguarding for printout, where overflow:hidden can't be used, due to another IE-bug.

Increasing the Reliability of the Layout

Numerous IE CSS bugs can be resolved by activating the proprietary property hasLayout. For some of

the predefined containers in the source code structure, this bugfix can be used without there being a

real need for it - purely as a precautionary measure.

body { height:1%; }

/* IE6 & IE7 */

.page_margins, .page, #header, #nav, #main, #footer { zoom:1; }

/* IE 5.x & IE6 | IE6 only */

* html .page_margins, * html .page { height:1%; hei\ght:auto; }

http://www.456bereastreet.com/archive/200603/new_clearing_method_needed_for_ie7/#comment28

53 CSS Components

 53

/* IE 5.x & IE6 | IE6 only */

* html #header, * html #nav,

* html #main, * html #footer { width:100%; wid\th:auto; }

The two containers which contain the layout (.page_margins and .page) are given hasLayout via

the property zoom:1 (IE6 & 7) or height: 1% (IE 5.x). The property width was intentionally left out

here: as the file iehacks.css is the last to be imported into the browser, the designer's intentions

could be unintentionally overwritten.

In the inner containers, the use of height is problematic, in case containers with fixed heights

should be intended. To retain flexibility, the proprietary property zoom s used for IE 6. The use of

zoom:1 has no disturbing side effects. For IE 5.x, the box model bug is exploited, allowing the

unproblematic use of width: 100%. IE 5.0 does not recognize the property zoom, thus requiring this

additional declaration.

Important: The rules for the former's ID #page_margins and #page still included for backward
compatibility, but they are no longer recommended. Use the corresponding CSS classes in new
projects.

Avoiding an Incomplete Display of Column Content

* html #col1 { position:relative }

* html #col2 { position:relative }

* html #col3 { position:relative }

A further workaround helps to avoid display problems in older versions of IE. IE 5.x and IE 6.0

sometimes display content only partially or not at all. The relative positioning of the column

containers solves this problem.

After these general preventative measures, the following details the handling of the most important

known CSS bugs and their treatment.

Escaping Floats Bug

 IE 5.x/Win IE 6.0 IE 7.0

Bug active Yes Yes Yes

The Escaping Floats Bug causes Internet Explorer to position floats incorrectly within a DIV container.

Two problems appear. First, the size of the surrounding DIV container is incorrectly calculated, and

second, the floats float out of the right-hand side of the container.

Both problems can be solved with the activation of hasLayout - in our example, with height:1%.

This bugfix has already been integrated within the basic layout in the section "Increasing the Stability

of the Layout": further measures are not required.

http://www.positioniseverything.net/explorer/escape-floats.html

54 CSS Components

 54

Guillotine Bug

 IE 5.x/Win IE 6.0 IE 7.0

Bug active Yes Yes Yes*

The IE/Win Guillotine Bug is triggered by many actions, in particular hover effects on hyperlinks. This

is absolutely the best-known IE bug -- and unfortunately, the most reliable way to avoid it is by:

avoiding hover effects.

/* Guillotine Bug when changing link background color | Guillotine Bug bei

Änderung der Hintergrundfarbe von Links */

a, a:hover { background: transparent; }

IE7 should have repaired this bug, yet reports of collapsing spacing still come in. The bugfix is

therefore also set to be used by IE 7.

Double Float-Margin Bug

 IE 5.x/Win IE 6.0 IE 7.0

Bug active Yes Yes No

Internet Explorer doubles the values of the side margins when positioning floated containers: the

("Doubled Float-Margin Bug") creates layout problems for the variable order of content columns.

Bugfix: Happily, the bug is easy to fix. Both float columns #col1 and #col2 are given the property

display:inline: ignored by all modern browsers, this guarantees that Internet Explorer 5.x and

6.0 display the margins correctly.

...

* html #col1 { display: inline; }

* html #col2 { display: inline; }

...

Expanding Boxes in Internet Explorer

 IE 5.x/Win IE 6.0 IE 7.0

Bug active Yes Yes No

Internet Explorer has great difficulty dealing with oversized content within fixed-width boxes. See

Internet Explorer and the Expanding Box Problem.

Bugfix: force a special line break-mode to guarantee a clean display in IE:

...

* html #col1_content { word-wrap: break-word }

* html #col2_content { word-wrap: break-word }

* html #col3_content { word-wrap: break-word }

...

The property word-wrap: break-word is proprietary to Internet Explorer and incomprehensible

to other browsers. It allows the browser to break text not only between words, but after every letter.

http://www.positioniseverything.net/explorer/guillotine.html
http://positioniseverything.net/explorer/doubled-margin.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.positioniseverything.net/explorer/expandingboxbug.html

55 CSS Components

 55

This does reduce readability somewhat when used in a very narrow column, but does provide a

consistent layout. The older 5.x versions of IE unfortunately do not react to this hack.

Oversized content elements can only be dealt with on the layout level: suggestions below.

Internet Explorer and the Italics Problem

 IE 5.x/Win IE 6.0 IE 7.0

Bug active Yes Yes No

The IE Italics-Bug is one of the most difficult to recognize and probably one of the least known CSS

bugs. IE expands the width of a container as soon as content in italics (marked with <i> or)

touch the right edge of the line. The CSS property font-style: italics can also trigger the bug.

The resulting greater width of the parent container creates problems in float-based layouts, as the

container no longer fits in the layout. The problem mostly affects the static column #col3.

Combined with the lack of hasLayout, static containers can even be completely hidden.

Bugfix: the fix for this problem is quite simple: the CSS property overflow:visible; is merely

assigned to all elements of the web page. This property's position in base.css, the first stylesheet

loaded, allows it to be overwritten by the later stylesheets should a layout require it.

* html body * { overflow:visible }

* html iframe, * html frame { overflow:auto }

* html frameset { overflow:hidden }

Although the value visible is the standard for the overflow property, and its explicit statement

superfluous, it nevertheless solves the Italics Problem for IE 5.5+. There is no solution for IE 5.01 --

luckily, this browser is increasingly rare.

In addition there are some further corrections needed in IE 5.x and IE6, so that textarea and input

elements will be displayed correctly. This is done within iehacks.css:

* html textarea {overflow:scroll; overflow-x: hidden}

* html input {overflow: hidden}

Disappearing List Background Bug

 IE 5.x/Win IE 6.0 IE 7.0

Bug active Yes Yes No

The IE Disappearing List-Background Bug is triggered when lists are placed within floating DIV

containers. In YAML, this happens primarily within the float columns #col1 and #col2 as well as in

every list within floating content elements. The bug causes background colors or graphics to partially

or completely disappear.

Bugfix: lists are assigned the property position:relative. This generally has no effect on the

layout - except that it reliably eliminates the bug.

http://www.positioniseverything.net/explorer/italicbug-ie.html
http://www.positioniseverything.net/explorer/ie-listbug.html

56 CSS Components

 56

...

* html ul { position: relative }

* html ol { position: relative }

* html dl { position: relative }

...

List Numbering Bug

 IE 5.x/Win IE 6.0 IE 7.0

Bug aktiv Ja Ja Ja

The IE List Numbering Bug is the last in this list of structure- and layout-independent CSS bugs. It is

triggered when hasLayout is activeted for list items of ordered lists. In this case, all available IE

versions fail to correctly assign numbers to the items of the list.

Bugfix: list items are assigned the property display:list-item. This generally has no effect on

the layout - except that it reliably eliminates the bug.

body ol li { display:list-item; }

In addition body in the selector raises specifity of the bugfix in the CSS cascade.

57 CSS Components

 57

3.5.2 Structure- and Layout-Dependent Bugfixes

As already mentioned in the introductory Section on IE Adjustments, not all bugfixes can be

implemented independent of the structure and layout of any particular YAML-based site. The

programmer must apply these bugfixes to suit the particular design.

This collection of bugfixes also contains those that correct the display of certain content elements. As

YAML cannot know your content as you do, you must adjust your classes accordingly. All these

bugfixes should be assembled in the IE Adjustment Stylesheet patch_[layout].css.

3-Pixel-Jog Bug

 IE 5.x/Win IE 6.0 IE 7.0

Bug active Yes Yes No

The problem: as soon as a floating container is placed to

the left of the static container #col3, the IE 3-Pixel-Jog

Bug appears. If the content of the static column #col3 is

longer than that in the float column, that longer content in

#col3 moves 3 pixels to the left, as in the screenshot.

Solution: #col3 must be assigned the CSS property

height: 1%. This hack again works on the basis of

assigning the IE proprietary property hasLayout to the

problematic container.

However, this hack does not actually force IE to correct

the mysterious jog, but rather moves all elements of container #col3 to the right -- by exactly 3

pixels. This shudder can then be corrected with the help of two negative margins. This correction

must be applied differently, depending on the order of the columns in the source code. Here is an

example of a solution for the basic layout with the float columns each 200 pixels wide:

/* LAYOUT-DEPENDENT ADJUSTMENTS | LAYOUT-ABHÄNGIGE ANPASSUNGEN ------------

-----------*/

...

* html #col3 { height: 1%; }

* html #col1 {margin-right: -3px;}

* html #col2 {margin-left: -3px;}

* html #col3 { margin-left: 197px; margin-right: 197px; }

...

Note: the use of this bugfix for all six possible column orders of the basic layout is demonstrated in
the examples/03_layouts_3col/ folder.

Important: this bugfix collides slightly with the use of graphic-free column separators: they will not
always reach the footer.

In these cases, you must use the "Faux Columns" technique to design column backgrounds with
background images.

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer.html
http://positioniseverything.net/explorer/threepxtest.html
http://positioniseverything.net/explorer/threepxtest.html
http://www.alistapart.com/articles/fauxcolumns/

58 CSS Components

 58

Handling Oversized Elements

The Internet Explorer 5.x and 6.0 expanding box problem has already been discussed and its solution

for a more flexible text line break integrated in the file iehacks.css. But we still need tools to deal

with oversized block elements (forms, tables, images, etc.).

Within flexible layouts, such elements can cause great problems inside columns with flexible widths,

as IE forcibly widens the corresponding parent container, instead of letting the element itself flow

out into the neighboring columns like all other browsers do.

YAML offers two different methods for solving this problem. Such elements can be put into a DIV

container with the class .floatbox. If the content item is too wide for the parent container, the

overhanging edges are cut off and layout problems avoided.

As an alternative, YAML offers the CSS class .slidebox. It can be assigned directly to the oversized

element, which will then overlap neighboring areas of the layout without extending its parent

container and destroying the layout.

.slidebox {

 margin-right: -1000px;

 position:relative;

 height: 1%

}

Note: this class should only be applied to static elements: when used on floating elements, the
negative margin creates an undesirable jog.

Disappearing Block Background Bug

The "Disappearing List Background Bug" is not the only bug that leads to incorrect display of

background colors and images. IE 5.x and IE 6.0 have general problems displaying background images

for elements with display:block -- as long as hasLayout is not activated.

The site creator must adjust these content elements specifically. Suitable CSS properties include

width, height, or zoom used with concrete values other than auto.

59 CSS Components

 59

3.6 Creating the Screen Layout

The real work for the site creator begins with the actual building of the screen layout. The basic CSS

components base.css und iehacks.css provide the consistent basic layout in all browsers, yet does not

supply a unique graphic design.

Your CSS declarations should be kept in a separate stylesheet so as not to interfere with the basic

structure. YAML furnishes suitable structures for you, but their use is not mandatory.

Components of the Screen Layout

The construction of the screen layout can be divided into three relatively independent sections:

1. Design of the layout elements (header, footer, content area)
2. Design of the navigational elements
3. Design of the content

The YAML framework provides file templates and preformatted CSS components to create your own

design in all three areas.

Avoid jumping in centered layouts

In pages that fit entirely within the browser's viewport, Firefox and Safari both hide the vertical

scrollbar. Should the website suddenly become taller than the size of the viewport, vertical scrollbars

appear. This disappearing act is irritating in centered layouts, as the center "jumps" from side to side.

This is not really about a bug as such, but something that simply annoys many users in centered

layouts. This workaround is placed at the beginning of basemod.css and can be used or removed as

desired.

/**

 * (en) Forcing vertical scrollbars in IE8, Firefox, Webkit & Opera

 *

 * @workaround

 * @affected IE8, FF, Webkit, Opera

 * @css-for all

 * @valid CSS3

 */

body { overflow-y:scroll; }

The CSS-3 standard property overflow-y forces the display of a vertical scrollbar, independent of

the size of the corresponding element, and is fully supported by all the usual browsers.

Note: when validating your stylesheets as CSS 2, you will be warned that the property overflow-y
is part of CSS 3: you can ignore this warning.

Design of the Layout Elements

The file basemod_draft.css in the yaml/screen/ folder is an empty design template to be used for the

basic layout resulting from the source code structure of the framework.

60 CSS Components

 60

@media screen, projection

{

 /*---*/

 /**

 * Design of the Basic Layout

 *

 * @section layout-basics

 */

 /* Page margins and background */

 body { ... }

 /* Layout: Width, Background, Border */

 .page_margins { ... }

 .page{ ... }

 /* Design of the Main Layout Elements */

 #header { ... }

 #tovnav { ... }

 #main { ... }

 #footer { ... }

 /*---*/

 /**

 * Formatting of the Content Area

 *

 * @section layout-main

 */

 #col1 { }

 #col1_content { }

 #col2 { }

 #col2_content { }

 #col3 { }

 #col3_content { }

 /*---*/

 /**

 * Design of Additional Layout Elements

 *

 * @section layout-misc

 */

 ...

}

This template contains all the elements of a basic layout. You can copy this template and begin to

desing the various containers as you wish. Additional elements should be integrated at the end of the

file.

Here too, YAML provides examples and sample applications for your use: categorized and organized

according to topic within the examples/ folder of the download package. All the examples use the

same basic screen layout, found in the corresponding css/screen/ folder within each example topic in

the CSS file basemod.css.

61 CSS Components

 61

These numerous examples demonstrate how the basic YAML layout can be variously modified. This

file is always the starting point for all customizations and adjustments.

Note: for now we will only discuss the basic method for creating a screen layout. Chapter 4 is
dedicated to the thorough presentation of the wide-ranging modifications possible with the
framework and intense analysis of many of the accompanying examples.

Desiging the Navigational Elements and the Content

These two points leave the site creator the most freedom. You can build them all completely from

scratch or use YAML's many CSS components as a starting point for your designs. Due to their range

and importance, each deserves its own section in the documentation: Section 3.7: Navigational

Components and Section 3.8: Designing the Content.

3.6.1 Putting the Layout Together

So far, we have discussed the individual CSS components of the framework as well as the basic

methods for creating a screen layout. The parts must now become a whole: the central stylesheet

comes into play.

In Section 3.3: The Central Stylesheet, the layout's assembly is illustrated with the example of

3col_standard.html from the examples/01_layouts_basics/ folder of the download package.

Put all the CSS components of your layout together and link your central stylesheet to your webpage.

Don't forget to set up your IE adjustments stylesheet, so that Internet Explorer has access to the

iehacks.css stylesheet: it is absolutely necessary for the correct display of the layout.

As soon as the screen layout is finished, you can take care of any necessary CSS adjustments for

Internet Explorer in your IE adjustments stylesheet.

http://www.yaml.de/en/documentation/practice/general.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/css-components/components-for-navigation.html
http://www.yaml.de/en/documentation/css-components/design-of-the-content.html
http://www.yaml.de/en/documentation/css-components/the-central-stylesheet.html

62 CSS Components

 62

3.7 Navigation Components

Of course a layout is never complete without a navigation. As navigational elements can become

quite complex, these are managed in individual CSS files. The layout integrates them via the central

stylesheet.

Within the YAML framework, several preformatted navigation components are available in the

yaml/navigation/ folder.

 nav_slidingdoor.css — Horizontal list navigation "Sliding Door II"
 nav_shinybuttons.css — Horizontal list navigation " Shiny Buttons"
 nav_vlist.css — Vertical list navigation

All listed components support tab navigation. The use of these components -- in particular the

structure of the source code and the classes and IDs -- is explained briefly here. And of course, you

are not at all required to use these particular components in your YAML layout.

3.7.1 Sliding Door Navigation

The first is a tab navigation based on the Sliding Door (and Sliding Door

II) at A-List-Apart.

This is a flat horizontal navigation with graphic hover effects for the

individual list elements. The hovers only work on standard-conform

browsers (Firefox, Safari, Opera, and IE 7). The hover effect is not

supported by IE 5.x and IE 6.0.

The XHTML markup of both tab navigations is simple and identical. The menu items are represented

as unordered lists. The active menu item is highlighted by replacing the link itself with the element

strong. Additionally, the surrounding list element has the CSS class active and can be

manipulated as desired.

An excerpt of source code to demonstrate the markup structure:

<div class="hlist">

 <li class="active">Button 1

 Button 2

 Button 3

 Button 4

 Button 5

</div>

examples/05_navigation/menu_slidingdoor.html

3.7.2 Shiny Buttons Navigation

The Shiny Buttons navigation requires few graphical elements. It uses the

very same XHTML markup as the Sliding Door Navigation, explained

http://www.alistapart.com/articles/slidingdoors/
http://www.alistapart.com/articles/slidingdoors2/
http://www.alistapart.com/articles/slidingdoors2/
http://www.alistapart.com/
http://www.yaml.de/fileadmin/examples/05_navigation/menu_sliding_door.html

63 CSS Components

 63

above. Switching between both design variants is easily accomplished by changing out the CSS

component in the central stylesheet for the website.

The menu items are represented as unordered lists. The active menu item is highlighted by replacing

the link itself with the element strong. Additionally, the surrounding list element has the CSS class

active and can be manipulated as desired.

<div class="hlist">

 <li class="active">Button 1

 Button 2

 Button 3

 Button 4

 Button 5

</div>

examples/05_navigation/mnu_shinybuttons.html

3.7.3 Vertical List Navigation

This navigation is a vertical list, usable at either a fixed or a

flexible width. Up to four hierarchy levels are possible as well as

highlighting of the menu title, using a H6 heading with CSS class

vlist right in front of the list.

The menu items are represented as unordered lists. The active

menu item is highlighted by replacing the link itself with the

element strong. Additionally, the surrounding list element

has the CSS class active and can be manipulated as desired.

Subtitles can be easily integrated for the submenus by using the

span element. In addition, each menu item incorporates a

hover effect on mouseovers.

The file nav_vlist.css from the yaml/navigation/ folder provides the functionality for this component.

The corresponding (X)HTML markup is as follows:

<h6 class="vlist">Title</h6>

<ul class="vlist">

 Button 1

 Button 2

 Ebene 3

 Button 3.1

 <li class="active">Button 3.2

 Button 3.3

 Button 4

 Button 5

examples/05_navigation/menu_vertical_listnav.html

http://www.yaml.de/fileadmin/examples/05_navigation/menu_shiny_buttons.html
http://www.yaml.de/fileadmin/examples/05_navigation/menu_vertical_listnav.html

64 CSS Components

 64

Adjustments for Internet Explorer

When using this navigation component, you must import the file patch_nav_vlist.css from the

yaml/patches/ folder into the corresponding IE adjustment stylesheet:

/* Layout-Independent Adjustments -------------------------*/

@import url(/yaml/core/iehacks.css);

@import url(/yaml/patches/patch_nav_vlist.css); /* Box Model Corrections */

/* Layout-Dependent Adjustments ---------------------------*/

@media screen

{

 ...

}

As the box model is particularly fault in Internet Explorer 5.x (see Section 2.4), this browser requires

special adjustments for this navigation.

...

/* level 1 */

* html .vlist li a,

* html .vlist li strong,

* html .vlist li span { width: 100%; w\idth: 90%; }

/* level 2 */

* html .vlist li ul li a,

* html .vlist li ul li strong,

* html .vlist li ul li span { width: 100%; w\idth: 80%; }

...

This code sets the width of the list elements to 100 percent for IE 5.x / Windows, correcting for the

faulty box model interpretation.

http://www.yaml.de/en/documentation/basics/xhtml-source-code.html

65 CSS Components

 65

3.8 Content Design

YAML is a layout framework and as such provides a structure to display columns correctly in all

browsers, no matter what content is added.

The structural, semantic, and visual composition of the content must be undertaken by the site

designer, yet YAML does provide a starter kit with the file content_default.css in the yaml/screen/

folder. This template sets up basic formatting for standard elements.

You can copy this template for your projects, change and expand it according to your needs, and

integrate it into your YAML-based layout via the central stylesheet.

3.8.1 The content_default.css Template

A website's content also requires careful design. Each browser has its own set of standard predefined

formats, resulting in more or less important differences in their displays.

Of course, not every single element can be explained in the documentation. That's why you will find

all styled elements from content_default.css in the following layout example:

/examples/01_layouts_basics/styling_content.html

Setting the basic font size

The first step on the way to a uniform display is the setting of a uniform font size for all standard

elements. The first step in resetting the various browser's individual settings is to define all font sizes

as 16 pixels high via the html * selector. The odd number evens out the rounding errors in a few

older browsers.

Note: the use of html * instead of * ensures that Internet Explorer will still recognize Javascript
expressions for simulating the CSS properties min-width and max-width. See Section 4.7.

/* (en) reset font size for all elements to standard (16 Pixel) */

/* (de) Alle Schriftgrößen auf Standardgröße (16 Pixel) zurücksetzen */

html * { font-size: 100.01% }

/**

 * (en) reset monospaced elements to font size 16px in all browsers

 * (de) Schriftgröße von monospaced Elemente in allen Browsern auf 16 Pixel

setzen

 *

 * @see: ...

 */

textarea, pre, code, kbd, samp, var, tt {

 font-family: Consolas, "Lucida Console", ...;

}

/* (en) base layout gets standard font size 12px */

/* (de) Basis-Layout erhält Standardschriftgröße von 12 Pixeln */

body {

 font-family: 'Trebuchet MS', Verdana, Helvetica, ...;

 font-size: 75.00%

}

http://www.yaml.de/fileadmin/examples/01_layouts_basics/styling_content.html
http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html

66 CSS Components

 66

The second part is a correction for a special characteristic of Gecko-based browsers. These browsers

set the standard font size of monospaced elements (textarea, pre, tt, code etc.) to 13px and not

to 16px as all other browsers do. By changing the font family from monospace to Courier New or

Courier, this problem can be avoided.

Below that we choose a new, sensible standard font size for the body element. As this property will

be inherited, it will thus be set for all elements within body. For the basis: a sans serif font, 12 pixels

high.

Headlines and Copytext

The next step sets the font sizes, margins, and line heights of the headlines and copytext.

h1,h2,h3,h4,h5,h6 {

 font-family: "Times New Roman", Times, serif;

 font-weight:normal;

 color:#222;

 margin: 0 0 0.25em 0;

}

h1 { font-size: 250% } /* 30px */

h2 { font-size: 200% } /* 24px */

h3 { font-size: 150% } /* 18px */

h4 { font-size: 133.33% } /* 16px */

h5 { font-size: 116.67% } /* 14px */

h6 { font-size: 116.67; font-style:italic } /* 14px */

p { line-height: 1.5em; margin: 0 0 1em 0; }

Important: generally, the font sizes should be given in relative units of measurement to allow all
browsers to zoom the text.

As soon as a value is given in pixels [px], Internet Explorer users (including users of IE 7) cannot use
the text-zoom function of the browser to size the text to their liking.

HTML List Design

The next block deals with the design of HTML lists. The default values correspond to those in

base.css. This redundancy is intentional: changes are easier to make when the original is available.

/* --- Lists | Listen ---------------------------- */

ul, ol, dl { line-height: 1.5em; margin: 0 0 1em 1em; }

ul { list-style-type: disc; }

ul ul { list-style-type: circle; margin-bottom: 0; }

ol { list-style-type: decimal; }

ol ol { list-style-type: lower-latin; margin-bottom: 0; }

li { margin-left: 0.8em; line-height: 1.5em; }

dt { font-weight:bold; }

dd { margin:0 0 1em 0.8em; }

67 CSS Components

 67

Text Markup

Quotes, text emphasis, abbreviations / acronyms, and preformatted text (or code excerpts) all often

require special text markup. These are included in our general formatting, with the basic properties

of font face, margins, etc.

/* --- general text formatting | Allgemeine Textauszeichnung --- */

...

blockquote, cite, q {

 font-family: Georgia, "Times New Roman", Times, serif;

 font-style:italic;

}

blockquote { margin: 0 0 1em 1.6em; color: #666; }

strong,b { font-weight: bold; }

em,i { font-style: italic; }

big { font-size:116.667%; }

small { font-size:91.667%; }

pre { line-height:1.5em; margin:0 0 1em 0; }

pre, code, kbd, tt, samp, var { font-size:100%; }

pre, code { color:#800; }

kbd, samp, var, tt { color:#666; font-weight:bold; }

var, dfn { font-style:italic; }

acronym, abbr {

 border-bottom: 1px #aaa dotted;

 font-variant: small-caps;

 letter-spacing: .07em;

 cursor: help;

}

sub, sup { font-size:91.6667%; line-height: 0; }

...

68 CSS Components

 68

Generic Classes for Positioning and Highlighting Content Elements

/**

 *

 * Generic Content Classes

 *

 * (en) standard classes for positioning and highlighting

 * (de) Standardklassen zur Positionierung und Hervorhebung

 *

 * @section content-generic-classes

 */

.highlight { color: #f60; }

.dimmed { color: #888; }

.info { background: #f8f8f8; color: #666; ... }

.note { background: #efe; color: #040; ... }

.important { background: #ffe; color: #440; ... }

.warning { background: #fee; color: #400; ... }

.float_left { float: left; display:inline; ... }

.float_right { float: right; display:inline; ... }

.center { display:block; text-align:center; ... }

Three CSS classes have been created to highlight elements according to their contextual relevance:

general information, an important note, and a warning.

The horizontal alignment of block elements is taken care of by three CSS classes: for left-aligned,

right-aligned, and centered.

Automatic Formatting of Hyperlinks

CSS automatically formats external links. This process is restricted to the actual content area of the

layout, the container #main. Adjust the URL label for your own domain.

/**

* External Links

* (en) classification and formatting of hyperlinks via CSS

* (de) Klassifizierung und Gestaltung von Hyperlinks mit CSS

*

* @section content-external-links

* @app-yaml-default disabled

*/

/*

 #main a[href^="http://www.my-domain.com"],

 #main a[href^="https://www.my-domain.com"]

 {

 padding-left: 12px;

 background-image: url('your_image.gif');

 background-repeat: no-repeat;

 background-position: 0 0.45em;

 }

*/

If you use relative paths for internal links, you can even leave out the URL.

69 CSS Components

 69

#main a[href^="http:"], a[href^="https:"] { ... }

Note: the style declarations for the automatic formatting of external links are commented out in the
template and must be activated for use in practice.

Important: the automatic link formatting requires the browser to support CSS 2.1 pseudoclasses.
Internet Explorer unfortunately does not fulfil this criterium.

Simple Table Design

The next block deals with the display of simple tables. Normal tables are created with an automatic

width, but by using the class .full the table can be forced to fill the entire width. Important to note:

when using this class, additional margins or borders on the sides will automatically create an

oversized element.

The second predefined CSS class, .fixed, allows the creation of tables at a fixed width: their cells

will not expand to encompass oversized content. These tables are thus easier to incorporate into

flexible layouts.

/**

 * Tables | Tabellen

 * (en) Generic classes for table-width ...

 * (de) Generische Klassen für die Tabellenbreite ...

 *

 * @section content-tables

 */

table { width: auto; border-collapse:collapse; ... }

table caption { font-variant:small-caps; }

table.full { width: 100%; }

table.fixed { table-layout:fixed; }

th,td { padding: 0.5em; }

thead th { color: #000; border-bottom: 2px #800 solid; }

tbody th { background: #e0e0e0; color: #333; }

tbody th[scope="row"],

tbody th.sub { background: #f0f0f0; }

tbody th { border-bottom: 1px solid #fff; text-align: left; }

tbody td { border-bottom: 1px solid #eee; }

tbody tr:hover th[scope="row"],

tbody tr:hover tbody th.sub { background: #f0e8e8; }

tbody tr:hover td { background: #fff8f8; }

The other definitions are self-explanatory. Column and row headlines can be clearly assigned by

using the handy differences between thead and tbody as well as the elements th and th.sub.

70 CSS Components

 70

3.9 Layout Adjustments for Printing

Preparing website content for paper is an important component of any website's design - and an

attractive screen design is no hindrance to a legible and well-organized print version.

The switch between screen and printed page means changing from an interactive to a passive

medium. Paper has a fixed size and proportions. Longer content areas must come to terms with page

breaks - something unfamiliar in the online world. Links are no longer clickable on paper, so if the

corresponding URL is not visible, important information is lost.

3.9.1 Printing Preparation

The headline does not quite capture the point. More accurately, you must merely decide if you want

to print the content of all column containers, of some, or of only one.

The question is: which parts of the layout contain important information and what is only decoration?

The footer information, advertising in the margins, and search forms are all useless in print. The

navigational elements are no longer usable on paper. It is unnecessary to print everything that

appears on the screen, so for a start, the print stylesheets hide the footer and the main navigation.

Choosing the Printable Column Containers

Within the YAML framework, the order and thus the use of the column containers of content,

navigation, or anything else, is variable. The print stylesheets are designed to let you freely choose

any combination of column containers to be printed.

You choose by linking one of the seven print stylesheets from the yaml/print/ folder in the central

stylesheet of your layout.

Print Stylesheet #col1 #col2 #col3

print_100_draft.css Yes - -

print_020_draft.css - Yes -

print_003_draft.css - - Yes

print_120_draft.css Yes Yes -

print_023_draft.css - Yes Yes

print_103_draft.css Yes - Yes

print_123_draft.css Yes Yes Yes

print_draft.css no predefined settings

3.9.2 Structure of the Print Stylesheets

The structure of these print stylesheets is nearly identical. Most of the decisions made for the printed

version of a website are independent of the columns chosen for printing. All the print stylesheet

must also adjust the screen layout for paper, by doing such things as hiding unnecessary layout

elements, displaying URLs, abbreviations, or acronyms, so that very little information is lost.

71 CSS Components

 71

Switching the Units of Measurement for Font Sizes

Practical font sizes are different for the screen and for paper. Onscreen, the scalability of the type is

very important, so we usually use relative units like em or percent. For print we use absolute units

like points or pica.

Normal text should not be set at anything smaller than 10pt (10 points) to be legible on paper. This

basic font size is set for the body element and is inherited down to all child elements.

/* (en) change font size unit to [pt] ... */

/* (de) Wechsel der der Schriftgrößen-Maßeinheit zu [pt] ... */

body { font-size: 10pt; }

Important: switching to pt (points) is necessary for consistent print results in Firefox. If you need to
change the standard font size, do use this unit of measurement.

General Layout Adjustments

/* (en) Hide unneeded container of the screenlayout in print layout */

/* (de) Für den Druck nicht benötigte Container des Layouts abschalten */

#topnav, #nav, #search { display: none; }

Navigation elements are generally turned off as they are useless in print. Please note here the

#search selector. In the basic layout, there is no predefined container for including a search form --

tastes and styles are too different to be able to provide one solution for everyone. Of course, this

element does exist in the majority of CMS-driven websites: it has been turned off here as search

functionality is also not useful on paper.

Controlling page breaks

Next, we attempt to avoid page breaks immediately after a headline by using the property page-

break-after:avoid. This too will help readability on paper.

/* (en) Avoid page breaks right after headings */

/* (de) Vermeidung von Seitenumbrüchen direkt nach einer Überschrift */

h1,h2,h3,h4,h5,h6 { page-break-after:avoid; }

Linearization of the Container Columns

The display of the column containers must be changed for paper. It is not practical to print them on

paper next to each other as they appear on the screen. Depending on the amount of content in the

various columns, unnecessary white space would be printed.

To avoid this, the container columns are linearized, or printed in the row in which they appear in the

source code -- and across the entire page. The following is an excerpt from the print stylesheet

print_103_draft.css. In this one, the column containers #col1 and #col3 are adjusted for the print

version, and #col2 is turned off.

#col1, #col1_content { float: none; width: 100%; margin: 0; padding: 0;

border: 0}

#col2 { display:none; }

#col3, #col3_content { width: 100%; margin: 0; padding: 0; border:0; }

72 CSS Components

 72

Optional Column Labeling

Linearization is practical for printing web pages of several columns. As the left- or right-alignment

disappears, the column containers must appear in the same order in which they appear in the source

code.

That means that in the basic layout (column order 1-3-2), column #col3 -- which usually contains the

main content -- would be printed last. As long as only this column is printed, this is irrelevant.

When several columns are printed, the hierarchy of the columns and their contextual relation to

each other can be lost as a result of the linearization. To improve the user's orientation, optional

headings can be added to each column container for the print layout, naming perhaps the column's

position on screen or labeling its content. This is simple and elegant with the CSS 2 pseudoclass

:before.

/* (en) Preparation for optional column labels */

/* (de) Vorbereitung für optionale Spaltenauszeichnung */

#col1_content:before, #col2_content:before, #col3_content:before {

 content: "";

 color:#888;

 background:inherit;

 display:block;

 font-weight:bold;

 font-size:1.5em;

}

Should a title be desired, the corresponding container need only be provided with the value for the

content property.

/* Optional Column Titles | Optionale Spaltenauszeichnung */

/*

 #col1_content:before {content:" [left | middle | right column]"}

 #col3_content:before {content:" [left | middle | right column]"}

*/

Note: the optional naming of the columns is predefined in all print stylesheets which print more than
one column, but for safety's sake is commented out.

Automatic Display of URLs, Acronyms and Abbreviations

As mentioned at the beginning, paper is static. Hyperlinks cannot be clicked, yet the URL should not

be completely lost -- neither should explanatory text for acronyms or abbreviations.

We must ensure that these items appear on the printed page. A CSS2 pseudoclass helps us avoid this

stumbling block.The additional text is printed in parentheses, URLs in brackets, each directly after the

corresponding element.

/* (en) Disable link background graphics */

/* (de) Abschalten evlt. vorhandener Hintergrundgrafiken ... */

abbr[title]:after, acronym[title]:after {

 content: '(' attr(title) ')'

}

73 CSS Components

 73

/* (en) Enable URL output in print layout */

/* (de) Sichtbare Auszeichnung der URLs von Links */

a[href]:after {

 content:" <URL: "attr(href)">";

 color:#444;

 background:inherit;

 font-style:italic;

}

Important: the following passages from the print style sheet require CSS 2.1 pseudoclasses in the
browser. Internet Explorer including Version 7 unfortunately does not meet these requirements.

These declarations allow URLs and explanatory texts to print directly after the linked text or marked

abbreviation. Little information from the website is lost in the transition to paper.

Note: this option is predefined in all print stylesheets but for safety's sake is commented out.

74 CSS Components

 74

3.10 The Form Construction Kit

Forms, necessary though they may be, are no fun to program. Their elements are limited in their

flexibility, as most browsers automatically display them to conform to the user's operating system.

 The difficulty of a uniform presentation is only increased by certain CSS bugs in Internet Explorer.

YAML 3.1 introduces a Form Building Kit as a new building block in the layout framework. As with the

subtemplates, it is a system of HTML building blocks and the corresponding CSS. The markup is

programmed according to best practice rules and is written to support accessibility standards.

An example for using the kit as well as the two basic design options (linear or column-based) is here:

/examples/01_layouts_basics/styling_forms.html

Apart form this simple structure, with the help of subtemplates also multi-column forms can be

easily implemented.

/examples/01_layouts_basics/multicolumnar_forms.html

3.10.1 The Markup

Of course you are free to program your forms any way you wish - using YAML does not force you to

use the Form Construction Kit.

To begin using the kit, assign the surrounding <form> element the CSS class yform.

<form method="post" action="" class="yform">

 <fieldset>

 <legend>fieldset heading</legend>

 ...

 </fieldset>

</form>

You can structure your form by using the <fieldset> tag, though this element is not required. Use

fieldsets to group elements in longer forms. Short forms (like a simple contact form) will not require

such subgroupings.

HTML Blocks for Form Elements

The following overview contains the standard markup for all the form elements of the Construction

Kit. As you can see, each HTML block consists of a form element (INPUT, TEXTAREA, SELECT etc.), the

corresponding label, and an enclosing DIV container. The CSS class for the container determines its

design and position.

Textfield

<div class="type-text">

 <label for="your-id">your label</label>

 <input type="text" name="your-id" id="your-id" size="20" />

</div>

http://www.yaml.de/fileadmin/examples/01_layouts_basics/building_forms.html
http://www.yaml.de/fileadmin/examples/01_layouts_basics/multicolumnar_forms.html

75 CSS Components

 75

Textarea

<div class="type-text">

 <label for="your-id">your label</label>

 <textarea name="your-id" id="your-id" cols="30" rows="7"></textarea>

</div>

Select

<div class="type-select">

 <label for="your-id">More Options</label>

 <select name="your-id" id="your-id" size="1">

 <option value="0" selected="selected" disabled="disabled">Please

choose</option>

 <optgroup label="First options to choose from">

 <option value="value #1">Option 1</option>

 <option value="value #2">Option 2</option>

 </optgroup>

 <optgroup label="Yet more options to choose from">

 <option value="value #3">Option 3</option>

 <option value="value #4">Option 4</option>

 <option value="value #5">Option 5</option>

 </optgroup>

</select>

</div>

Checkbox

<div class="type-check">

 <input type="checkbox" name="your-id" id="your-id" />

 <label for="your-id">Your checkbox label</label>

</div>

Radio-Buttons

<div class="type-check">

 <input type="radio" name="your-id" value="value #1" id="your-id" />

 <label for="your-id">Your radio-button label</label>

</div>

Button-Set

<div class="type-button">

 <input type="button" value="button" id="button1" name="button1" />

 <input type="reset" value="reset" id="reset" name="reset" />

 <input type="submit" value="submit" id="submit" name="submit" />

</div>

You can transfer these blocks to your source code just by copying and pasting. Make sure that you

use a unique name for the attribute id="your-id", as it must be used in the for="your-id"

attribute of the label in order to connect the label to the correct form element.

76 CSS Components

 76

Note: the "name" attribute within the form element is optional and may be left out. A few JS-based
form validators use this attribute: should you choose to use one of these scripts, make sure you use
the same word for the name as well as for the id.

The visual appearance of the form elements is controlled indirectly, by a surrounding div container

with a particular CSS class (for instance: type-text). This method allows us to influence input fields,

checkboxes, and radio buttons even in older versions of Internet Explorer (IE5.x and IE6). If we were

using attribute selectors, like input[type="text"] { ... }, we could never design for these

browsers as they do not understand the constructs.

The following predefined classes are ready to use:

CSS Class of the Parent Element (DIV) Affected Form Elements

type-text input fields, text areas

type-select select boxes

type-check checkboxes, radio buttons

type-button buttons (i.e.: reset, submit)

Note: hidden input fields (type="hidden") can be inserted anywhere in these predefined containers.
They are always invisible, no matter how the other input elements are defined.

3.10.2 The CSS of the Form Components

The second component of the Form Construction Kit comprises the stylesheet forms.css, which is

saved in the folder yaml/screen/. This is not a core component of the framework which may not be

edited, but a stylesheet that you are free to change to meet your needs.

Visual Design of the Form Elements

The stylesheet forms.css is divided into two sections. The first part contains all the CSS rules for the

visual presentation of the individual elements.

This part can be edited at will to suit the appearance of your forms, the fieldsets, as well as all the

various form elements to your own site design.

/**

 * YAML Forms - visual styling

 *

 * (en) visual form styling area

 * (de) Festlegung des optischen Erscheinungsbildes

 */

.yform {

 background: #f4f4f4;

 border: 1px #ddd solid;

 padding: 10px;

}

...

The visual design includes colors, borders, margins, and perhaps images for specifying the

appearance of the various form elements -- including the :focus, :hover and :active conditions.

77 CSS Components

 77

Technical Basis of the Form Construction Kit

The second section contains the definitions for positioning the elements in a way which increases the

accessibility of the forms. The standard form is a vertical, linear sequence of labels and form

elements.

/**

 * Vertical-Forms - technical base (standard)

 *

 * |-------------------------------|

 * | fieldset |

 * |-------------------------------|

 * | label |

 * | input / select / textarea |

 * |-------------------------------|

 * | /fieldset |

 * |-------------------------------|

 *

 * (en) Styling of forms where both label and ...;

 * (de) Formulargestaltung, bei der sowohl Label als auch ...

 *

 * ...

 */

/* General form styling | Allgemeine Formatierung des Formulars */

.yform { overflow: hidden; }

.yform fieldset { overflow: hidden; }

.yform legend { background: transparent; border: 0; }

.yform label { display:block; cursor: pointer; }

...

The specifics of the CSS rules cannot be explained here. The construction of the form components

bases on proven best practice rules and ensures correct display in all relevant browsers, in fixed and

in flexible layouts.

Note: the CSS contains further preventive measures to preclude display errors in older versions of
Internet Explorers, in particular relating to the relative positioning of the form elements. Again, the
complexity of the bugfixes is too great to explain here in the space available.

Alternative Display Variation

As an alternative to the vertical ordering of labels and fields, the Form Construction Kit offers the css

class .columnar. When added to a form element, a fieldset, or a DIV container, this class forces the

form elements into two columns.

Each label then appears in a row with its corresponding form element (based on floats), with labels in

the first column and the elements in the next.

78 CSS Components

 78

/**

 * Columnar forms display - technical base (optional)

 *

 * |---|

 * | fieldset |

 * |---|

 * | |

 * | label | input / select / textarea |

 * | |

 * |---|

 * | /fieldset |

 * |---|

 *

 * (en) Styling of forms where label floats left of form-elements

 * (de) Formulargestaltung, bei der die label-Elemente nach links fließen

 *

 * ...

*/

/* Columnar display | Spalten-Darstellung */

.columnar .type-text label,

.columnar .type-select label {

 float: left;

 width: 30%; /* Can be fixed width too | Kann auch eine fixe Angabe sein

*/

}

/* Indent Checkbox fields to match label-width ... */

.columnar div.type-check { padding-left: 30%; }

.columnar div.error .message { margin-left: 30%; }

.columnar div.type-text input,

.columnar div.type-text textarea { width: 67.8%; }

.columnar div.type-select select { width: 69.4%; }

/* width adjustments for IE 5.x & IE6 ... */

* html .columnar div.type-text input,

* html .columnar div.type-text textarea { width: 67.2%; }

* html .columnar div.type-select select { width: 68.8%; }

The columns are set to 30% width for the label and 70% for the form element. The widths of the

elements have been chosen carefully and thoroughly tested: avoid changing them if you can.

The odd-looking numbers are a result of the necessary jiggling for flexible width layouts: the exact

width of the form elements cannot be determined, as paddings on the side are generally given in PX

or EM. Even more annoying, select elements generally have different widths in various browsers.

The given widths ensure an extremely similar width for all element types and simultaneously avoid

annoying line breaks in the floated surroundings.

79 CSS Components

 79

3.10.3 Adjustments for Internet Explorer

As in the elements for the page layout, Internet Explorer versions 5.x - 7.0 still need help in displaying

forms that will look like those in the other browsers.

General Adjustments

Many display errors are connected to the use of <fieldset> elements -- fieldset backgrounds are

not completely rendered, for example. These problems are so general that they are corrected in the

iehacks.css file for the entire YAML framework.

/**

 * Form related bugfixes

 *

 * @bugfix

 * @affected IE 5.x/Win, IE6, IE7

 * @css-for IE 5.x/Win, IE6, IE7

 * @valid no

 */

fieldset, legend { position:relative; }

The bugfix for these display problems involves assigning the property position:relative. This

property generally does not influence a form's design, so it can be assigned directly to the elements

and thus correct all forms within any YAML layout.

 /**

 * Global fixes for YAML's form construction set

 *

 * @workaround

 * @affected IE 5.x/Win, IE6, IE7, IE8

 * @css-for IE 5.x/Win, IE6, IE7, IE8

 * @valid no

 */

.yform,

.yform div,

.yform div * { zoom:1; }

The second part specifically concerns the Form Construction Kit. Therefore the definitions are

located in forms.css. The kit elements are assigned the property zoom:1 to activate hasLayout -- just

in case. As this method could change existing forms, it is limited to the YAML form kit (.yform) as a

preventive measure.

Note: zoom is a proprietary CSS property of the Internet Explorer that does not validate. This error
can be ignored as this property doesn't have any influence on other browsers.

Correct Display of Legends Within Fieldsets

A further problem in Internet Explorer is the problematic display of fieldsets with legends, anytime

these are centered above the upper edge of the fieldset. Unfortunately, this is the exact default

position for legends in any other web browser, so a workaround had to be built into forms.css.

80 CSS Components

 80

/**

 * Forms Fieldset/Legend-Bug in IE

 * @see ...

 *

 * @workaround

 * @affected IE 5.x/Win, IE6, IE7, IE8

 * @css-for IE 5.x/Win, IE6, IE7, IE8

 * @valid no

 */

/* all IE */

.yform { padding-top: 0\9; }

.yform fieldset { padding: 0 5px\9; padding-top:1em\9; }

.yform legend { position:absolute\9; top:-.5em\9; *left: 0\9; }

.yform fieldset { position:relative\9; overflow:visible\9; margin-

top:1.5em\9; zoom:1; }

/* IE5.x, IE6 & IE7 */

.yform legend { *padding: 0 5px; }

.yform fieldset { *padding-top:1.5em; }

/* IE5.x & IE6 */

* html .yform { padding-top: 10px; }

The workaround uses absolute positioning to place the legend above the fieldset and thus allow a

display equivalent to the standard default.

As it is absolutely positioned, the legend drops out of the normal text flow: this means that the upper

padding and margin of the fieldset must be adjusted so that neighboring and child elements can

continue to be placed precisely.

Note: the necessary CSS hacks for this IE workaround will not validate. However the adjustments of
the padding and margins of the fieldset depend upon the individual layout (visual presentation of the
forms, see above). This means that developers must be able to edit these properties: thus they are
included at the very end of forms.css.

81 Practice

 81

4 Practice
4.1 Five Rules...

The following rules summarize the basic principles defining YAML's development:

Rule 1: YAML is not a Prefab Layout

YAML bases on web standards and is a versatile tool for creating flexible, accessible CSS

layouts. The best basis for effective work with the framework is a thorough understanding of

YAML's structure and workings. Please take time to read the documentation before you

begin your work.

Rule 2: YAML is Based on the Top-Down Principle

YAML provides a flexible, multi-column layout with all the important standard web page

elements and functional stylesheets for correct display in all browsers, as well as an

optimized layout for the printed version. The user optimizes the finished layout by deleting

unneeded elements from the source code.

Rule 3: CSS Basic Components

Every YAML-based layout needs two basic CSS components base.css and iehacks.css from the

yaml/core/ folder. They are responsible for the correct display in all browsers and ensure

perfect printing.

Rule 4: Separation of YAML and User CSS

The files in the YAML folder should remain unchanged. Custom stylesheets or changed

versions of YAML's CSS components belong in the user's own separate CSS folder. Only then

can the layout's development basis remain stable over time and bugfixing as well as

maintenance and updates are simplified.

Rule 5: Have Fun with YAML!

4.1.1 Samples Included

In addition to the documentation, the examples folder in the YAML download package contains a

great number of prefabricated sample layouts, which can help you understand how the framework

functions and serve as a starting point for your own projects.

Note: if you are new to YAML, please take the time to read the documentation through to the end.
Chapter 4 contains the complete instructions for practical use, which you should read before you
start.

These examples introduce the basic layout's various modification possibilities, as well as the use of

the various CSS components provided. Section 1.5: The Structure of the Download Package provides

an overview.

http://www.yaml.de/en/documentation/introduction/framework-folder-structure.html

82 Practice

 82

4.1.2 Tips for CSS Beginners

If you are not yet familiar with CSS, take one of the examples which fits your design requirements

best and play around with the various style definitions of the screen layout. Try out what changes do

what to the layout.

Change margins, font sizes, colors, and container widths. Messing around with them will help you

overcome any awe of CSS and you'll quickly learn exactly what parts of YAML do what -- and how.

4.2 Recommended Project Structure

There are generally no requirements for working with YAML. The project structure recommended

here has proved to be practical, as it makes bugfixing easier when creating a layout and maintenance

easier when a new version of YAML is released.

4.2.1 Step 1: Creating Files and Folders

First, copy the complete yaml/ folder onto your server and

create another folder on the same hierarchical level called

css for your own unique CSS files.

XHTML Source Code: copy the XHTML template

markup_draft.html from the yaml/ into your project folder

and rename the file.

Central Stylesheet: copy the stylesheet template

central_draft.css into your css folder and rename the file

accordingly.

IE Patches: copy the file template patch_layout_draft.css

from the yaml/patches/ folder into your css/my_patches/

folder and rename it to match the name of your central stylesheet (so that the relationship is easier

to remember).

The screenshot shows the protostructure of your new project (as seen in a Dreamweaver project

window).

4.2.2 Step 2: Adjusting the Paths

After creating the project structure, you must check all paths for the CSS components. The XHTML

source code must contain the paths to the central stylesheet and to the patch file. The central

stylesheet and patch file themselves must have the correct paths to base.css and iehacks.css. After

these checks, the basic layout is ready to go and the real graphic design can be implemented.

83 Practice

 83

4.2.3 Step 3: Layout Design

From this point on, you have the choice: you can create

your own stylesheets for the screen and print layouts as

well as for the navigation, or you can start off with YAML's

file templates and preformatted CSS components.

The folder yaml/screen/ contains the file templates

basemod_draft.css for the page layout and

content_default.css to format content.

Copy these templates into your css folder and change them

to suit your wishes. You can work with the navigation

components and the print stylesheets in the same fashion.

Note: do not forget to include these additional components in your central stylesheet.

84 Practice

 84

4.3 Basic Variations

YAML offers you many ways to

customize the basic layout to your

wishes. I will explain these possibilities

in this and the following sections. First

let us examine the (X)HTML source

code structure and the column order

within.

The order of the column containers in

the (X)HTML source code is fixed and

should not be changed: all CSS

components, in particular the

adjustments for Internet Explorer,

depend on this structure.

The basic layout can be varied and yet

retain its full functionality in all

browsers -- in particular the IE clearing,

which ensures that #col3 even in IE

remains the longest column and

permits graphic-free column

separators.

Accessible layouts often demand that

the actual content of a page be at the very beginning of the source code. The idea is to allow text

browsers or screenreaders easy access to the main subject matter. Other page elements (sidebars,

advertising, etc.) should then follow further down.

Note: for the three-column layouts, Section 4.4 thoroughly describes the means for YAML to fulfil
this concept absolutely. This involves the completely free ordering of the individual columns on the
screen, independent of their position in the source code.

The disadvantage of the independent column order is that four of the six possible variations are

incompatible with the IE clearing, and thus can no longer utilize graphic-free column separators.

http://www.yaml.de/en/documentation/practice/any-order-columns.html

85 Practice

 85

4.3.1 3-Column Layouts

The basic layout uses the column order 1-3-2. The static column #col3 is surrounded by the two

float containers #col1 and #col2. To switch to column order 2-3-1, you must merely change the

float direction.

#col1 {float:right }

#col2 {float:left }

Switching the property allows you to change the layout order of the content in your side columns.

You can use this method to layout a subnavigation on either the left or the right and yet still have it

directly follow on the main navigation in the source code. The subnavigation need merely be placed

in the column #col1 and one of the two column orders to locate it either on the right or the left.

In both cases, #col3 is meant for the main content and is in last place in the source code. This is

certainly not ideal for accessibility purposes, but is easy enough to compensate for via the skip-links

built in to the standard layout.

That is certainly the most often-used column arrangement -- but it is by no means the only one. An

alternative layout can use one of the side columns for the main content. In this case, navigation,

sidebars, and extras can appear in two narrow columns next to each other.

86 Practice

 86

#col1 {width: 60%}

#col2 {width: 20%}

#col3 {margin: 0 60% 0 20%}

This variation also allows the switching of the float direction of the two columns #col1 and #col2,

depending on the location of the main content, left or right. The advantage here is that the static

column #col3 is still between the two side columns and the use of graphic-free column separators

presents no problems.

4.3.2 2-Column Layouts

Two columns also allow an optimal placement of content in the source code while yet retaining full

control of its position in the layout. Usually a narrow column will contain the navigation, and a wide

column holds the content.

In our example, the navigation should appear on the left. There are two ways to accomplish this.

These images demonstrate the possibilities for column arrangement. Generally one uses one floating

container (#col1) and one static container (#col3).

All these combinations provide full framework functionality: by this we mean the graphic-free

column separators or backgrounds. Simultaneously, the content can be placed in the source code in a

location optimized for search engines.

87 Practice

 87

The required changes in the basic layout are minimal. The CSS must change the left / right

orientation of the container #col1 and the corresponding margins for #col3. The width of the

column alone determines which will perform which function within the layout.

Note: in the samples of the download package, there are four varieties of two-column layouts, each
realized with containers #col1 and #col3. All the possible combinations for the container order
have been included.

4.3.3 Further Alternatives for Sorting the Containers

But wait, there's more! The previous two-column layouts

merely hid one of the two float columns. Yet a two-column

layout can be built from #col2 and #col3, leaving #col1

available for other purposes.

The standard layout treats the three containers as columns of

a multi-column layout. Of course - only you decide which

container is used for what purpose and in which order.

The example to the right needs an additional container in full

width between the page header and the two-column main

area. In this case, it is simple to place #col1 directly above

the two other columns #col2 and #col3.

#col1 {float: none; width: auto; }

#col2 {float: left; width: 25%; }

#col3 {margin-left: 25%; margin-right: 0 }

There are few restrictions in the placement of the column containers on the screen. As the source

code itself remains unchanged, it is quite easy to recognize and work around possible stumbling

blocks in the known IE CSS bugs.

4.3.4 Generic CSS Classes for Layout Design

Besides the possibility of alternative layout options through the integration of alternative stylesheets,

taking advantage of the CSS cascade, you can now use the following standard classes to hide and

display the columns.

/**

 * @section generic classes for layout switching

 * @see www.yaml.de/en/documentation/practice/basic-variations.html

 *

 * .hidecol1 -> 2-column-layout (using #col2 and #col3)

 * .hidecol2 -> 2-column-layout (using #col1 and #col3)

 * .hideboth -> single-column-layout (using #col3)

 */

.hideboth #col3 { margin-left: 0; margin-right: 0; }

.hideboth #col3_content{ padding-left: 20px; padding-right: 20px; }

.hidecol1 #col3 { margin-left: 0; margin-right: 25%; }

88 Practice

 88

.hidecol1 #col3_content{ padding-left: 20px; }

.hidecol2 #col3 { margin-left: 25%; margin-right: 0; }

.hidecol2 #col3_content{ padding-right: 20px; }

.hideboth #col1, .hideboth #col2,

.hidecol1 #col1, .hidecol2 #col2 { display:none; }

The relevant class should be assigned either to the body element or any other parent container of

your columns (e.g. #main).

These classes must of course be adjusted to the desired column widths of the screen layout. Here

they are meant as orientation tools and have only the standard values.

Note: the use of these classes for modifying the layout is particulary useful in the context of Content
Management Systems. Many CMS do not offer access to the HTML header, so that exchanging
stylesheets for layout modification is difficult to impossible. Alternate versions of the basic layout
often require separate templates.

Manipulating the HTML elements within the body, on the other hand, is generally simple. By using
these generic classes, a template can yet be easily modified.

The following example demonstrates the usage of these generic CSS classes:

examples/04_layouts_styling/dynamic_layout_switching.html

http://www.yaml.de/fileadmin/examples/04_layouts_styling/dynamic_layout_switching.html

89 Practice

 89

4.4 Variable Order and Use of Content Columns

Section 4.3 demonstrated several fundamental variations on the basic layout. Those all fulfilled the

requirement that YAML's full functionality (including the use of the borders on #col3 to create

column separators or backgrounds, see Section 4.6) remain intact.

This requirement is merely a design criterium and not absolutely necessary when developing a

layout. With regards to a website's accessibility (for example, its display in text browsers), other

criteria can be more important, which might even demand a different order of the column containers

than that of the basic layout.

Many web designers prefer to place the content close to the beginning of the source code, and leave

the less important elements such as the navigation or the sidebars for later. Though the necessity of

this sorting is debatable, the discussion must be carried out elsewhere. Here, we will see how YAML

can also fulfil this demand.

Note: the following CSS excerpts were taken from the sample layouts in the folder
examples/03_layouts_3col/. You will find the corresponding basemod_xy.css files in the css/screen/
folder, which modifies the column order of the basic screen layout.

Important: the bugfix for the IE 3 Pixel Bug is built into the patch files of this layout sample, as its
basic use can be demonstrated here with several different column orders.

4.4.1 Ordering Columns

The greatest design freedom can be had

when the order of the column

containers in the source code has no

influence on their position on the

screen. In this case, the web designer

can place the content in the source

code according to other demands

(accessibility, search engine

optimization, etc.) and has complete

control over their screen and paper

layout via the stylesheets.

As described in Section 4.3, the order of

the columns in the source code cannot

be changed at will. But it is also

completely unnecessary.

The position and order of the columns

on the screen is completely controlled

via CSS. You must only insert your

content at that point of the source code

where we'd like it. Afterwards, the

containers are arranged with CSS, and

http://www.yaml.de/en/documentation/practice/basic-variations.html
http://www.yaml.de/en/documentation/practice/column-design.html
http://www.yaml.de/en/documentation/practice/basic-variations.html

90 Practice

 90

variously dependent upon the final medium.

For three columns with three various contents, there are exactly six possible combinations for their

placement next to each other on the screen. These combinations are described and their limitations

outlined in the following.

All these combinations use a three-column layout with proportions 25 | 50 | 25 percent. The

positioning examples are in the examples/03_layouts_3col/ folder of the download package.

The most important characteristics have been summarized in this table for each possible column set..

The following legend explains the table's abbreviations:

Abbreviation Explanation

U-Mix Various units of measurement can be mixed within the layout to set column width:
fixed (pixels), flexible (%), and elastic (EM).

Percent A flexible layout is possible with all column widths set as percents.

Pixels A fixed layout is possible with all column widths set in pixels.

EM An elastic layout is possible with all column widths given in EM / EX values.

3P-Fix The 3 Pixel Bug can be overcome.

SPT The border property of #col3 can be used to represent graphic-free column
separators or backgrounds.

Faux The "Faux Columns" technique for displaying column separators or backgrounds is
applicable.

91 Practice

 91

4.4.2 Column Order 1-3-2 and 2-3-1

 Layout U-Mix Percent Pixels EM 3P-Fix SPT Faux

1-3-2 Yes Yes Yes Yes Yes *) Yes Yes

2-3-1 Yes Yes Yes Yes Yes *) Yes Yes

*) The use of graphic-free column separators and the fix for the 3 Pixel Bug via #col3 are mutually incompatible.

The column order 1-3-2 corresponds exactly to the standard definition, as anchored in the file

base.css (see Section 3.4). I discussed voth variations while explaining the three-column layouts in

Section 4.3.

/* #col1 becomes the left column | wird zur linken Spalte */

#col1 { width: 25%; }

/* #col2 becomes the right column | wird zur rechten Spalte */

#col2 { width: 25%; }

/* #col3 becomes the middle column | wird zur mittleren Spalte */

#col3 { margin-left: 25%; margin-right: 25%; }

03_layouts_3col/3col_1-3-2.html

To display the reverse order, 2-3-1, we needn't change the order of the columns in the source code --

merely change the float direction of the two columns in a basemod_xy.css file.

/* #col1 becomes the right column | wird zur rechten Spalte */

#col1 { float:right; width: 25%; }

/* #col2 becomes the left column | wird zur linken Spalte */

#col2 { float:left; width: 25%; }

/* #col3 becomes the middle column | wird zur mittleren Spalte */

#col3 { margin-left: 25%; margin-right: 25%; }

That's it. The screen would now show the order 2-3-1.

03_layouts_3col/3col_2-3-1.html

http://www.yaml.de/en/documentation/css-components/base-stylesheet.html
http://www.yaml.de/en/documentation/practice/basic-variations.html
http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_1-3-2.html
http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_2-3-1.html

92 Practice

 92

4.4.3 Column Order 1-2-3 and 3-2-1

 Layout U-Mix Percent Pixels EM 3P-Fix SPT Faux

1-2-3 - Yes Yes Yes Yes - Yes

3-2-1 - Yes Yes Yes Yes - Yes

The columns should display in either 1-2-3 from left to right, or in the opposite order, 3-2-1, in which

they appear in the source code.

This presentation order is also simply manipulated. First, the two float columns must be placed next

to each other. For that, both containers need only float in the same direction. So for the order 1-2-3,

#col2 must float:left, and for the order 3-2-1, the container #col1 must float:right.

In the second step, #col3 is shoved to the left or right edge. This is easy enough with a margin on

one side which is exactly as wide as the two columns #col1 and #col2 together.

For the column order 1-2-3, the containers are sorted from left to right.

/* #co11 becomes the left column | wird zur linken Spalte */

#col1 { width: 25%; margin: 0;}

/* #col2 becomes the middle column | wird zur mittleren Spalte */

#col2 { width: 50%; float:left; margin: 0;}

/* #col3 becomes the right column | wird zur rechten Spalte */

#col3 { margin-left: 75%; margin-right: 0%; }

03_layouts_3col/3col_1-2-3.html

For the column order 3-2-1, the containers are sorted from right to left.

/* #col1 becomes the right column | wird zur rechten Spalte */

#col1 { width: 25%; float:right; margin: 0;}

/* #col2 becomes the middle column | wird zur mittleren Spalte */

#col2 { width: 50%; margin: 0;}

http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_1-2-3.html

93 Practice

 93

/* #col3 becomes the left column | wird zur linken Spalten */

#col3 { margin-left: 0; margin-right: 75%; }

03_layouts_3col/3col_3-2-1.html

4.4.4 Column Order 2-1-3 and 3-1-2

 Layout U-Mix Percent Pixels EM 3P-Fix SPT Faux

2-1-3 - Yes Yes Yes *) not required - Yes

3-1-2 - Yes Yes Yes *) not required - Yes

*) EM based column widths are possible only if the layout width is also defined in EM.

The last two combinations let the first column in the source code order be placed in the middle on

the screen. The previously described column order shows that when #col1 and #col2 have the

same float direction, they appear in the same order onscreen as they do in the source code. We have

to change that now.

At this point, we need to think outside of the box: other creative people have already wracked their

brains over this issue and have found a wonderfully simple solution: negative margins. Alex Robinson

uses this technique in the "any order columns" section of his article "In search of the One True

Layout". By using negative margins, the two columns can be moved to precisely the position

necessary. The same principle can be used on both YAML's float columns.

The first step ensures that both #col1 and #col2 float in the same direction: both are assigned

float:left. Then needs a margin-left that's exactly as wide as #col2. #col1 is then already in its

final position, and #col2 floats right up next to it -- but on its right, not yet on the left.

Now come the negative margins. Our reference point on #col2 is the top left corner. In order to

move it to the left of #col1, it has to be moved to the left by its own width as well as the width of

#col1. The resulting margin totals up to -75 percent. The final step moves #col3 to the right side by

adding float:right property.

As all columns are floats now, we have to force #main to contain its floating children. This is done by

adding float:left property.

http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_3-2-1.html
http://www.fu2k.org/alex/css/
http://positioniseverything.net/articles/onetruelayout/
http://positioniseverything.net/articles/onetruelayout/

94 Practice

 94

/* containing floats in #main */

#main { width:100%; float:left; }

/* #col1 becomes middle column */

#col1 { width: 50%; float:left; margin-left: 25%; }

/* #col2 becomes left column */

#col2 { width: 25%; float:left; margin-left: -75%; }

/* #col3 becomes right column */

#col3 {

 margin-left: -5px;

 margin-right: 0;

 float:right; width: 25%;

}

In this column order, the IE Doubled Float Margin Bug (see Section 2.13.5) would usually strike -

literally doubling all margins and absolutely destroying this layout. But have no fear: the

corresponding bugfix is already integrated in the file iehacks.css and incorporated into every YAML-

based layout.

03_layouts_3col/3col_2-1-3.html

The procecure for the column order 3-1-2 is quite similar: just the float directions for #col1 and

#col2 are switched out, the margins added together for the right side, and a different column gets

the negative margin, as IE fails to comprehend a negative margin-right for #col2.

So #col1 must float:right, the same direction as #col2. Then #col1 is moved to the middle

with a negative margin of the sum of its width and the width of #col2 (margin-left: -75%). To ensure

that older versions of IE can still play along nicely, the margins for both sides are explicitly assigned

for each column. Now that #col1 is in the middle of the page, #col2 floats up to the right. Last,

#col3 lands on the left side and again, #main is forced to contain its floating children.

/* containing floats in #main */

#main { width: 100%; float:left; }

/* #col1 becomes middel column */

#col1 { width: 50%; float:right; margin-left: -75%; margin-right:25%;}

/* #col1 becomes right column */

#col2 { width: 25%; float:right; margin-right: 0%;}

/* #col3 becomes left column */

#col3 {

 margin-left: 0;

 margin-right: -5px;

 float:left; width: 25%;

}

03_layouts_3col/3col_3-1-2.html

http://www.yaml.de/de/dokumentation/css-struktur/anpassungen-fuer-den-ie.html
http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_2-1-3.html
http://www.yaml.de/fileadmin/examples/03_layouts_3col/3col_3-1-2.html

95 Practice

 95

Column arrangement with negative margins works in all modern browsers. Alex Robinson points out

that Netscape 6 & 7 and the older Opera 6 still have problems, but the current browser version

Netscape 8.x did fine in our testing, and Opera 6 is, shall we say, antiquated.

4.4.5 The Upshot

YAML allows you to arrange your columns on the screen in any order, completely independent of

their position in the source code.You alone decide which column will contain which content,

navigation, or sidebar. The advantages and disadvantages of the various placement methods are

easily compared with their relative usefulness.

Note: YAML with its print stylesheets offers an optional heading for the column containers for the
print version. This can be useful when the linearized presentation is set to print the containers in a
different order than they appear on the screen.

http://positioniseverything.net/articles/onetruelayout/anyorder

96 Practice

 96

4.5 Subtemplates

The website is of course not finished once the basic layout is done: the content itself has yet to be

arranged. Many pages require several short content sections next to each other - though we are not

speaking of tabular data. And of course a traditional column layout does not always meet the

demands of today's design: the YAML homepage itself (www.yaml.de) exemplifies a much freer use

of content blocks.

For these purposes, YAML offers subtemplates. These are XHTML code snippets which allow a

horizontal division of content within various containers. These components are based on nested

floating DIV boxes.

Note: all the required CSS definitions for the subtemplates are found in the file base.css. The
adjustments for the correct automatic clearing in Internet Explorer are in the file iehacks.css.
Subtemplates are integrated in the basic components of the framework and are available to all YAML
layout variations.

Subtemplates can also be nested within each other. This allows you to vary the column divisions in

countless various ways.

4.5.1 Structural Composition

The structure of such a code snippet is easy to understand with an example. Below is the required

XHTML code for a 50/50 split - a division into left and right blocks of equal size.

...

<!-- Subtemplate: 2 columns with 50/50 division -->

<div class="subcolumns">

 <div class="c50l">

 <div class="subcl">

 <!-- left content block -->

 ...

 </div>

 </div>

 <div class="c50r">

 <div class="subcr">

 <!-- right content block -->

 ...

 </div>

 </div>

</div>

...

You get the general idea: let's now take a look at the details.

The Container

A subtemplate always begins with a DIV container of the .subcolumns class, which encompasses

the smaller individual containers that actually divide the space.

http://www.yaml.de/

97 Practice

 97

<!-- Subtemplate: 2 columns with 50/50 division -->

<div class="subcolumns">

...

</div>

The file base.css assigns the class .subcolumns the following CSS properties, which should not be

changed.

/**

 * @section subtemplates

 * @see ...

 */

.subcolumns { width: 100%; overflow: hidden; }

.subcolumns_oldgecko { width: 100%; float:left; }

The container width is set as 100 percent by default, so that it completely fills the available horizontal

space. Simultaneously, this definition activates the property hasLayout in Internet Explorer, forcing it

to encompass the content within. All other browsers need the CSS property overflow:hidden (see

Section 2.3: Markup-Free Clearing).

Note: Netscape browsers up to and including Version 7.1 as well as old Gecko browsers (up to about
July 2004) have problems with the display of the subtemplates due to a bug in connection with
overflow:hidden. Netscape's version 7.2 and up display subtemplates correctly.

If support of these older Gecko-based browsers is required, you can use the class
.subtemplates_oldgecko instead. Please note the information in Section 5.3 on the Netscape
overflow-Bug.

Dividing Space with DIV Blocks

DIV blocks with the CSS classes c50l and c50r divide the horizontal space. The "c" stands for

column, the number "50" for 50 percent of the available width and the letters "l" and "r" for left- and

right-floating blocks.

<!-- Subtemplate: 2 columns with 50/50 division -->

<div class="subcolumns">

 <div class="c50l">

 ...

 </div>

 <div class="c50r">

 ...

 </div>

</div>

In general, two blocks (a left and a right) form a pair. The sum of the widths of all blocks within a

subtemplate should always equal 100%. The following division ratios are provided for as part of

YAML's predefined CSS classes, e.g.:

 50% / 50% Division (classes c50l and c50r)
 33% / 66% Division (classes c33l and c66r as well as c66l and c33r)
 25% / 75% Division (classes c25l and c75r as well as c75l and c25r)
 Golden Ratio (classes c38l and c62r as well as c62l and c38r)

http://www.yaml.de/en/documentation/basics/general.html
http://www.yaml.de/en/documentation/tools-tips/known-problems.html

98 Practice

 98

The class definitions are in the file base.css.

.c20l, .c25l, .c33l, .c40l, .c38l, .c50l,

.c60l, .c62l, .c66l, .c75l, .c80l {float: left; }

.c20r, .c25r, .c33r, .c40r, .c38r, .c50r,

.c60r, .c66r, .c62r, .c75r, .c80r {float: right; margin-left: -5px; }

.c20l, .c20r { width: 20%; }

.c40l, .c40r { width: 40%; }

.c60l, .c60r { width: 60%; }

.c80l, .c80r { width: 80%; }

.c25l, .c25r { width: 25%; }

.c33l, .c33r { width: 33.333%; }

.c50l, .c50r { width: 50%; }

.c66l, .c66r { width: 66.666%; }

.c75l, .c75r { width: 75%; }

.c38l, .c38r { width: 38.2%; }

.c62l, .c62r { width: 61.8%; }

The real width of a floating container is calculated by the browser just before it is rendered. The

percentage values' conversion into pixels requires rounding. and Internet Explorer is sometimes less

accurate than other browsers relating to the total width of all DIV blocks within a subtemplate.

The result is that the sum of the individual containers is greater than the width of the parent

container .subcolumns, and the floating DIV boxes are displaced. To avoid this effect, all right-

floating DIV blocks are assigned a margin-left: -5px. This allows any right-floating container to

overlap an element to its left by a maximum of five pixels: an elegant compensation for the rounding

errors.

Important: the compensation for these rounding errors demands exactly one right-floating container
within each subtemplate.

These predefined CSS classes allow the following arrangements, even without nesting the

subtemplates:

 80% - 20%

 75% - 25%

 66% - 33%

 62% - 38%

 60% - 40%

 50% - 50%

 40% - 60%

 38% - 62%

 33% - 66%

 25% - 75%

 20% - 80%

 33% - 33% - 33%

These blocks can be nested deep within each other simply by inserting further subtemplates. This

allows nearly absolute freedom in the division of your columns.

99 Practice

 99

The Content Containers

As in the layout columns of the YAML framework, the outer containers (here the DIV blocks c50l

and c50r) set up the division of space, while the inner containers subc, subcl and subcr maintain

the padding, margin, and border around the content.

<div class="subcolumns">

 <div class="c50l">

 <div class="subcl">

 <!-- left content block -->

 ...

 </div>

 </div>

 <div class="c50r">

 <div class="subcr">

 <!-- right content block -->

 ...

 </div>

 </div>

</div>

.subc { padding: 0 0.5em 0 0.5em; }

.subcl { padding: 0 1em 0 0; }

.subcr { padding: 0 0 0 1em; }

The final letters "l" and "r" stand for content blocks on the left or right side of the subtemplate. This

influences the padding). For content blocks which are not on the side, such as the middle block of a

33/33/33 division, we have the container subc, which has padding on both sides.

The sum of the assigned paddings must always be identical for each block to guarantee that each

column has exactly the same width.

The containers subcl and subcr on the sides are each assigned a padding of 1 em on the inner side.

The container subc needs padding on both sides, which must total 1 em: it is assigned left and right

paddings of 0.5 em each.

4.5.2 Adjusting the Subtemplates for Internet Explorer

The subtemplates use the CSS property float rather extensively. This means that we must deal with

the corresponding IE bugs such as the Escaping Floats Bug and the Doubled-Float-Margin Bug -- and

of course the Expanding Box Problem turns up when we work with flexible container widths.

Analogous to the bugfixes for the YAML basic layout, the bugfixes are also applied to the subcolumns.

.c20l, .c25l, .c33l, .c38l, .c40l, .c50l, .c60l,

.c62l, .c66l, .c75l, .c80l, .c20r, .c25r, .c33r,

.c38r, .c40r, .c50r, .c60r, .c66r, .c62r, .c75r, .c80r {

 display:inline;

}

100 Practice

 100

/* avoid growing widths */

* html .subc,

* html .subcl,

* html .subcr { word-wrap:break-word; o\verflow:hidden; }

The Escaping Floats Bug is taken care of when the container .subcolumns is provided with

hasLayout via width:100%. The property display:inline defuses the Doubled-Float-Margin Bug,

and word-wrap:break-word and overflow:hidden ensure that even the older IE generations (IE

5.x and IE 6) cut off oversized content elements and do not let them destroy the layout.

Note: the file iehacks.css sets the property word-wrap back to the standard value of word-
wrap:normal for printing.

4.5.3 Examples for Subtemplates Use

The following examples show subtemplates used directly as well as nested. Read the source code of

the examples in the online documentation carefully to understand exactly what's happening.

50 / 50 Split

Block 1: Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla dapibus mattis
tellus. Ut dui nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit. Nunc ac urna.
Nullam sed quam ac turpis porta porta. Aliquam
ut sem ut leo mattis ultricies. Aliquam aliquam
ligula ut purus. ..

Block 2: Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla dapibus mattis
tellus. Ut dui nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit. Nunc ac urna.
Nullam sed quam ac turpis porta porta. Aliquam
ut sem ut leo mattis ultricies. Aliquam aliquam
ligula ut purus. ...

33 / 33 / 33 Split

Block 1: Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla
dapibus mattis tellus. Ut dui
nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit.
Nunc ac urna. ...

Block 2: Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla
dapibus mattis tellus. Ut dui
nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit.
Nunc ac urna. ...

Block 3: Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. In ac lectus. Aenean
tincidunt metus nec orci. Nulla
dapibus mattis tellus. Ut dui
nunc, ultrices ut, egestas vitae,
feugiat ac, tortor. Nullam velit.
Nunc ac urna. ...

Divisions According to the Golden Ratio

Block 1: Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. In ac lectus. Aenean tincidunt metus nec
orci. Nulla dapibus mattis tellus. Ut dui nunc, ultrices ut,
egestas vitae, feugiat ac, tortor. Nullam velit. Nunc ac
urna. Nullam sed quam ac turpis porta porta. Aliquam ut
sem ut leo mattis ultricies. Aliquam aliquam ligula ut
purus. ...

Block 2: Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. In ac lectus.
Aenean tincidunt metus nec orci. Nulla
dapibus mattis tellus. Ut dui nunc,
ultrices ut, egestas vitae, feugiat ac,
tortor. Nullam velit. Nunc ac ...

http://www.yaml.de/en/documentation/practice/subtemplates.html

101 Practice

 101

Endless Variety with Nesting

Subtemplates can be endlessly nested within each other, allowing you countless various column

divisions. The only requirement is that within each nesting level, the sum of the blocks' width must

always be 100%. The following example shows such a nesting. Within the left 50 percent block are

two further 50 percent blocks. The right 50 percent block is further divided according to the Golden

Ratio.

Block 1: Lorem ipsum
dolor sit amet,
consectetuer
adipiscing elit. In ac
lectus. Aenean
tincidunt metus nec
orci. Nulla dapibus
mattis tellus.

Block 2: Lorem ipsum
dolor sit amet,
consectetuer
adipiscing elit. In ac
lectus. Aenean
tincidunt metus nec
orci.

Block 3: Lorem
ipsum dolor sit
amet,
consectetuer
adipiscing elit. In
ac lectus ...

Block 4: Lorem ipsum dolor
sit amet, consectetuer
adipiscing elit. In ac lectus.
Aenean tincidunt metus nec
orci. Nulla dapibus mattis
tellus. ...

4.5.4 Special Case: Equal Height Boxes

Starting with version 3.1, YAML natively supports the creation of content containers of equal height -

independent of their content - with pure CSS. The concept behind this bases on the markup of the

subtemplates, but combined with several CSS layout concepts in order to ensure correct

crossbrowser display.

Technical Background

In modern browsers with complete CSS2 support, the subtemplates are transformed into CSS tables.

In Internet Explorer 5.x - 7.0 we must still use floating containers, extended with a CSS hack to

simulate equally tall columns with the help of large paddings. This technique is explained at length

by Alex Robinson in his "One True Layout" article.

The corresponding CSS rules for the combination of the various techniques are completely

integrated in base.css and iehacks.css for easy access. Rules are tied to the CSS class equalize, which

overwrites some of the properties of the normal subtemplates via the CSS cascade. Again, the

technique is too complex to relate here.

In Practice

The creation of equal height boxes within YAML is very easy. You activate this property of the

subtemplates merely by assigning the surrounding container the additional CSS class equalize. The

characteristics are then handed down, so all nested subtemplates inherit the equal height.

<!-- Subtemplate: 2 columns with 50/50 division -->

<div class="subcolumns equalize">

...

</div>

By assigning the CSS class .equalize, the column containers .cxxl and .cxxr are forced to the

same height. The content containers .subcl, .subcr, and .subc do not change.

http://www.positioniseverything.net/articles/onetruelayout/equalheight

102 Practice

 102

The following sample demonstrates the possibilities of this technique with three flexible boxes, lined

up next to each other, with a decorated frame.

/examples/06_layouts_advanced/equal_height_boxes.html

Important: as a result of the techniques used for Internet Explorer 5.x - 7.0, neither elements nor
background images can be absolutely positioned at the bottom of the equal height boxes.

Should this positioning be necessary for layout reasons, use the CSS class .no-ie-padding to
deactivate the expansion of the containers in Internet Explorer. In this case, you as layout designer
must ensure the equal height of your boxes -- either with content or by explicitly assigning a specific
height.

The layout sample "equal height boxes" demonstrates how this complicated-sounding workaround
functions in practice, by positioning the "more" links. For more information, read the source code of
the sample layout.

http://www.yaml.de/fileadmin/examples/06_layouts_advanced/equal_height_boxes.html

103 Practice

 103

4.6 Column Design

In Section 2.7 we discussed the particulars of the special clearing at the end of the static column

#col3.

Of course this does not deliver our ideal genuine equal-length columns, but YAML's method does

bring us very close. How close exactly? Let's examine the following two examples.

Important: The column #col3 nearly always needs the value width:auto;! Otherwise Internet
Explorer will apply the attribute hasLayout = true (see the article: on having Layout), destroying our
careful IE clearing at the end of #col3 by encompassing it.

Background: the static column #col3 is the bearer of the column separators. Without the clearing,
the column and thus the lines would not always reach all the way down to the footer.

4.6.1 Example 1 - Column Separators

A common design element is vertical separation

lines between the individual content columns. The

Faux Columns technique (with background images)

is often used to ensure that these lines are always

the same length, independent of how full each

column container is

When using the column order 1-3-2 and 2-3-1 (see

Section 4.4), YAML can create lines without using

any background images at all. Instead, we use the

CSS border property of the static column #col3.

This is possible in these column orders because #col3 is always the longest.

Below is an example of a two-pixel wide dotted line as a column separator for a three-column layout:

#col3 {

 border-left: 2px #ddd dotted;

 border-right: 2px #ddd dotted;

}

04_layouts_styling/3col_column_dividers.html

http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://www.satzansatz.de/cssd/onhavinglayout.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html
http://www.yaml.de/fileadmin/examples/04_layouts_styling/3col_column_dividers.html

104 Practice

 104

4.6.2 Example 2 - Column Backgrounds

As already mentioned, CSS cannot really

construct a “genuine” column layout with floating

elements, as the individual columns are always

only as high as the contents require. So we need

to use a little trick to put background images or

colors on those columns. We have chosen the

"Faux Columns" technique as it is the most

reliable method for producing the desired effect.

We use the fact that all the column containers,

whose height varies, are contained within a

parent container like #main, which thus automatically expands to the height of the tallest column. So

we leave the background of the column containers transparent and assign the desired background

image to a container like #main. As CSS 2 can only assign one background image per container, the

second column graphic needs a second container. The accompanying examples use .page. And to

ensure that the background image from .page (which surrounds #header and #footer) is really

only visible in the column area, #header and #footer are assigned solid white backgrounds.

The following example details the simple implementation of this technique. The necessary CSS

definitions are in the file basemod_faux_columns.css.

04_layouts_styling/3col_faux_columns.html

Our trick is a bit more involved when using flexible layouts. Assuming you define your column widths

in percent, we can still use the Faux Columns technique. It is slightly more complicated because you

have to prepare a particular background image so that the CSS positioning works correctly. The

article "Faux Colums for liquid layouts" details the technique extensively. The following example

shows its use within a three-column layout with embellished side columns.

04_layouts_styling/3col_liquid_faux_columns.html

Note: in earlier YAML versions it was also possible to use the border property of the #col3 container
to create a solid column background for the side column. This method is no longer supported in
YAML 3.2 and above, as it creates a particular accessibility problem when certain contrast modes are
used with Windows.

http://www.yaml.de/fileadmin/examples/04_layouts_styling/3col_faux_columns.html
http://www.addedbytes.com/css/faux-columns-for-liquid-layouts/
http://www.yaml.de/fileadmin/examples/04_layouts_styling/3col_liquid_faux_columns.html

105 Practice

 105

4.7 Minimum & Maximum Widths for Flexible Layouts

Flexible layouts adjust themselves dynamically to the current width of the browser window. This

behavior is normally quite useful, but is sometimes inconvenient. For example, an extremely narrow

browser window can make the layout illegible and thus unusable. You should define a lower limit for

your elements' width, perhaps oriented to a desktop resolution of 800x600 pixels, to guarantee a

legible layout even at that size.

Just as important: an upper limit for the layout's width. If the layout is too wide, copytext appears in

very long lines. In extreme cases, paragraphs of several lines become individual lines of text. This is

very tiring for readers' eyes, as they must travel a long way before reaching the break at the edge of

the page. Even these details can frustrate your site's readers.

Both scenarios can be easily avoided with the CSS properties min-width and max-width.

The YAML framework's basic layout should contain all the width definitions in the container

.page_margins, as this encompasses and thus defines all the other elements.

.page_margins {

 min-width: 760px;

 max-width: 100em;

 ...

}

This example defines a minimum layout width of 760 pixels. This will work even on a desktop

resolution of 800x600 pixels and allows the layout to display in the browser's full-picture mode

without creating horizontal scrollbars.

A maximum width is better defined according to the font size, in EM. A value in pixels would create

problems when zooming on text, as the layout would not adjust itself for the larger letters.

Unintentional line breaks and oddly-placed pictures would result. Basing the layout width on the font

size itself easily eliminates this problem: the example below shows a value of 100em.

4.7.1 CSS Support Lacking in Internet Explorer 5.x and 6.0

Again, Internet Explorer makes life harder for us web designers: IE up to and

including version 6.0 supports neither min-width nor max-width. Only with

Internet Explorer 7.0 did Microsoft finally add these properties, as well as the

additional min-height and max-height. This novum as well as the fixed

CSS bugs and the greater surfing security is a blessing for web programmers.

One can only hope that IE7 spreads quickly.

And yet, the older IE versions cannot be ignored when creating a layout, as IE 6 still rules the browser

statistics and will certainly not disappear so quickly, even though its market share is steadily eroded

by IE7.

For Internet Explorer 5.x and 6.0, I have prepared two Javascript methods to mimic the min-width

and max-width properties for these browsers.

106 Practice

 106

4.7.2 Solution 1: IE Expressions

Internet Explorer allows the web page creator dynamic access to CSS properties with the proprietary

property expression(). With help from Javascript, we can quite simply fake the missing CSS

properties. Svend Tofte's article max-width in IE offers a general overview of the technique.

However, the examples in that article demand Quirks Mode (see DocTypes & Display Modes in

Section 2.4). Jeena Paradies invented a Code Variant, which also works in Standard Mode in IE and

provides the basis for the solution discussed here.

Important: earlier YAML versions required Internet Explorer be set to Quirks Mode for this method:
no more!

The JS expressions should be built into the patch files, so that only IE is forced to load the required

code. Below is an excerpt, as used in the layout examples in the download package:

/**

 * min-width/max-width workaround for IE5.x & IE6

 *

 * @workaround

 * @affected IE 5.x/Win, IE6

 * @css-for IE 5.x/Win, IE6

 * @valid no

 */

 * html .page_margins {

 /* Fallback if JavaScript is disabled */

 width: 80em;

 /* JS-Expression for min-/max-width simulation */

 width: expression(...);

 }

Note 1: the doubled request for the current viewport size is indeed necessary, as IE 6.0 in Standard
Mode reaches .clientWidth in a different way than in IE 5.x, which is generally in Quirks Mode.

Note 2: You don't have to create the JS-Expression by hand for your individual layout. The YAML
Builder will help you by creating all necessary code dynamically depending on your layout settings.

This example implements a minimum layout width of 740 pixels. The maximum width is based on the

font size. The current font size of the body element must be determined and then compared with the

value 80em.

The fallback solution for those surfing without Javascript is to define width:80em before the

expression() appears in the code.

http://www.svendtofte.com/code/max_width_in_ie/
http://www.yaml.de/en/documentation/basics/xhtml-source-code.html
http://www.yaml.de/en/documentation/basics/xhtml-source-code.html
http://jeenaparadies.net/weblog/2007/mar/min-max-width-expression
http://builder.yaml.de/
http://builder.yaml.de/

107 Practice

 107

4.7.3 Solution 2: External Javascript "minmax.js"

The Javascript file minmax.js from doxdesk.com is included in the YAML download package, in the

js/javascript folder. This file can be integrated into the web page's head and mimics the full

functionality of the min-width, max-width, min-height, and max-height -- by evaluating the

CSS definitions and adjusting IE's rendering accordingly.

This script, when linked via Conditional Comments (<link

href="css/patches/patch_3col.css" rel="stylesheet" type="text/css" />), is only

loaded by those browsers which need it: IE versions 5.x and 6.0. Internet Explorer 7 no longer

requires this script, as it interprets the standard CSS properties.

<head>

...

<!--[if lte IE 7]>

<link href="../css/patches/patch_3col_standard.css" rel="stylesheet"

type="text/css" />

<![endif]-->

<!--[if lte IE 6]>

<script type="text/javascript" src="js/minmax.js"></script>

<![endif]-->

</head>

That was it -- no more work is necessary. Watch the effect of the Javascript on the test page

minmax_js.html.

/examples/08_special_interest/minmax_js.html

Note: This Javascript does have a notable disadvantage: it is only loaded after the page has been fully
rendered. That means that a too-small or too-large browser window will first show the page without
the min-width or max-width adjustments, and will only adjust the layout after a few tenths of a
second. The page will visibly "jump", and this can be rather annoying while surfing a website. Please
test this effect before adding the script.

http://www.doxdesk.com/software/js/minmax.html
http://www.yaml.de/fileadmin/examples/08_special_interest/minmax_js.html

108 Practice

 108

4.8 Selected Application Examples

The following three sections explain example layouts for specific demands, all created with YAML.

The structure of the examples will help you understand the various ways to design the basic layout

and how to manipulate the framework. All the samples contained in the download package

examples/ folder are based on a simple screen layout, explained below.

The Screen Layout of the Examples

The basis is a flexible three-column layout with the column order 1-3-2 (the standard order) and the

columns divided into 25% | 50% | 25% of the screen. This layout is in the

examples/01_layouts_basics/ folder.

01_layouts_basics/layout_3col_standard.html

The minimum width is fixed at 740 pixels, orienting itself to a desktop resolution of 800x600 pixels,

and allowing a display at that resolution without horizontal scrollbars. The maximum width of the

layout is set at 80em, which in combination with the standard font size of 75% (16px*0,75=12px, set

in content.css) results in a width of 960 pixels.

The screen layout is included via the CSS file basemod.css, which is found in every theme folder

within the respective css/screen/ folder. Below is a code excerpt:

/* (en) Marginal areas & page background */

body { background: #9999a0; padding: 10px 0; }

/* (en) Layout: width, background, borders */

.page_margins {

 min-width: 740px; max-width: 80em;

 margin: 0 auto; border: 1px #889 solid;

}

.page{ background: #fff; border: 1px #667 solid; }

/* (en) Centering layout in old IE-versions */

body { text-align: center }

.page_margins { text-align:left }

/* (en) Designing main layout elements */

#header {

 color: #fff;

 background: #000 url("…") repeat-x bottom left;

 padding: 45px 2em 1em 20px;

}

#tovnav { color: #aaa; background: transparent; }

#main { background: #fff }

#footer {

 color:#fff;

 background: #336 url("…") repeat-x bottom left;

 padding: 15px;

}

/* (en) adjustment of main navigation */

http://www.yaml.de/fileadmin/examples/01_layouts_basics/3col_standard.html

109 Practice

 109

#nav ul { margin-left: 20px; }

#nav_main {background-color: #336}

/**

 * (en) Formatting content container

 *

 * |-------------------------------|

 * | #header |

 * |-------------------------------|

 * | #col1 | #col3 | #col2 |

 * | 25% | flexible | 25% |

 * |-------------------------------|

 * | #footer |

 * |-------------------------------|

 */

#col1 { width: 25% }

#col1_content { padding: 10px 10px 10px 20px; }

#col2 { width: 25% }

#col2_content { padding: 10px 20px 10px 10px; }

#col3 { margin: 0 25% }

#col3_content { padding: 10px }

Note: The structure of the file is based on the template basemod_draft.css from the yaml/screen/
folder, which was explained in Section 3.6: Creating the Screen Layout.

The file nav_shinybuttons.css from the yaml/navigation/ folder has been linked unchanged. The only

adjustment was in the distance of the first menu item from the left edge of the layout (#nav ul {

margin-left: 20px }).

Adjustments of the Screen Layout for Internet Explorer

The basic layout still needs two special adjustments for an error-free display in Internet Explorer 5.x

and 6.0. The 3 Pixel Bug must be fixed and minimum and maximum layout widths set. The JS-

expressions used are explained in Section 4.7.

The adjustments for Internet Explorer are kept in the patch file patch_3col_standard.css,

corresponding to the basic layout, in the css/patches/ folder.

/* IE 3 Pixel Bug | Bug: 3-Pixel-Jog des Internet Explorers */

* html #col3 { height: 1%; }

* html #col1 {margin-right: -3px;}

* html #col2 {margin-left: -3px;}

* html #col3 { margin-left: 24%; margin-right: 24%; }

/* min-width / max-width for IE */

* html .page_margins {

 width: 80em;

 width: expression(...);

}

That finishes the most basic version of the screen layout.

http://www.yaml.de/en/documentation/css-components/design-of-the-screen-layout.html
http://www.yaml.de/en/documentation/practice/minimum-maximum-widths.html

110 Practice

 110

4.8.1 Draft Layout "2col_advanced"

This first layout draft with the name

2col_advanced meets the following

requirements:

 Two-column layout (navigation left in
#col3 and main content right in
#col1)

 Flexible layout with flexible column
widths (25% | 75%)

 Further division of the main content
area in two columns after the first
paragraph

 Vertical 1 pixel wide separator between the columns with a vertical spacing of 1em to both
header and footer.

 Horizontal main navigation "Shiny Buttons"
 Print layout: only the main content from #col1.

/examples/06_layouts_advanced/2col_advanced.html

Layout Draft in Detail

The central stylesheet layout_2col_advanced.css contains the following CSS components:

/* import core styles | Basis-Stylesheets einbinden*/

@import url(../../../yaml/core/base.css);

/* import screen layout | Screen-Layout einbinden */

@import url(../../../yaml/navigation/nav_shinybuttons.css);

@import url(screen/basemod.css);

@import url(screen/basemod_2col_left_seo.css);

@import url(screen/content.css);

/* import print layout | Druck-Layout einbinden */

@import url(../../../print/print_001.css);

First, the base stylesheet base.css from the yaml/core/ folder is loaded, as well as the unmodified

navigation nav_shinybuttons.css.

Then, the basic version of the screen layout basemod.css is imported, which forms the basis of the

layout. The modifications for the requirements of the desired two-column layout are found in the

basemod_2col_advanced.css file.

/* #col1 becomes the main content column */

#col1 { width: 75%; float:right}

#col1_content { padding: 10px 20px 10px 10px; }

/* hide #col2 | #col2 abschalten */

#col2 { display:none; }

/* #col3 becomes the left column */

#col3 { margin-left: 0; margin-right: 75%; }

#col3_content { padding: 10px 10px 10px 20px; }

http://www.yaml.de/fileadmin/examples/06_layouts_advanced/2col_advanced.html

111 Practice

 111

/* graphic-free column separators between #col1 and #col3 */

#col3 {border-right: 1px #ddd solid;}

#main {padding: 1em 0}

2 Columns: with the first declaration, #col1 receives 75 percent of the available width and is

floated to the right, becoming the main content column. The container #col2 is not needed and is

hidden. Finally, #col3 is moved to the left side by adjusting its margins.

Column separators: in addition, this example uses a 1 pixel wide dotted line as a vertical column

separator. This is created by using the CSS border property for the static #col3. The top and

bottom margins of the #main container determine the spacing of the line from the header and

footer.

Adjustments for Internet Explorer

The adjustments for Internet Explorer are collected in the file patch_2col_advanced.css in the

css/patches folder. As the graphic-free column separators are used, the 3 Pixel Bug cannot be fixed in

this layout.

/* LAYOUT-INDEPENDENT ADJUSTMENTS ----------------------------- */

@import url(../../../../yaml/core/iehacks.css);

/* LAYOUT-DEPENDENT ADJUSTMENTS ------------------------------- */

@media screen, projection

{

/* min-width / max-width for IE

* html .page_margins {

 width: 80em;

 width: expression(...);

}

First, the stylesheet integrates the global adjustment file iehacks.css from the yaml/core/ folder. (Do

not be distracted by the relative paths in this example - they are only due to the folder structure of

the sample folder.)

Next, we incorporate the IE expressions to simulate min-width and max-width in IE 5.x and 6.

Note: If you look at this example in IE5.01, you will notice that some paddings collapse. The
corrections are not demonstrated in this example, as they are not necessary for understanding
YAML.

112 Practice

 112

4.8.2 Layout Draft "3col_advanced"

In this layout draft named 3col_advanced, we meet

the following challenges:

 Three-column layout (column order 2-1-3)
 Total width 960 pixels (240 | 480 | 240

columns)
 Further subdivision of the main content

area in two columns after the first
paragraph

 Column background left: background image
with the "Faux Columns" technique.

 Horizontal main navigation "Shiny Buttons"
 Print layout: only the main content from

#col1
 Basis for the screen layout is the three-column basic layout of the YAML framework

/examples/06_layouts_advanced/3col_advanced.html

Layout Draft in Detail

The central stylesheet layout_3col_advanced.css contains the following CSS components:

/* import core styles | Basis-Stylesheets einbinden*/

@import url(../../../yaml/core/base.css);

/* import screen layout | Screen-Layout einbinden */

@import url(../../../yaml/navigation/nav_shinybuttons.css);

@import url(screen/basemod.css);

@import url(screen/basemod_3col_fixed_seo.css);

@import url(screen/content.css);

/* import print layout | Druck-Layout einbinden */

@import url(../../../print/print_001_draft.css);

First, we link the basic stylesheet base.css from the yaml/core/ folder as well as the unmodified

navigation nav_shinybuttons.css.

Then we import the basic version of the screen layout basemod.css, which forms the basis of the

layout. The modifications for our current requirements are in the file basemod_3col_advanced.css.

Fixed Width and Centered Layout: the fixed layout width of 960 pixels is set at the outermost

container .page_margins. Setting the side margins to auto can then center this container. The

minimum and maximum widths are turned off, as they are useless in a fixed layout.

http://www.yaml.de/fileadmin/examples/06_layouts_advanced/3col_advanced.html

113 Practice

 113

/* Setting the layout width and centering | Festlegung der Layoutbreite und

Zentrierung*/

.page_margins {

 width: 960px;

 min-width:inherit;

 max-width:none

}

Column order 2-1-3: I described the technique for resorting the columns in Section 4.4: Variable

Column Order. Now it will be used to arrange the content within the source code according to its

relevance.

/* #col1 becomes the middle column | #col1 wird zur mittleren Spalte */

#main {width:100%; float:left; }

#col1 { width: 480px; float:left; margin-left: 240px; }

#col1_content {padding-left: 10px; padding-right: 10px}

/* #col2 becomes the left colum |#col2 wird zur linken Spalte */

#col2 { width: 240px; float:left; margin-left: -720px; }

#col2_content {padding-left: 20px; padding-right: 10px}

/* #col3 becomes the right column | #col3 wird zur rechten Spalte */

#col3 { margin-left: -5px; margin-right: 0; width: 240px; float:right; }

#col3_content {padding-left: 10px; padding-right: 20px}

Note the declaration of #col3: it is now floated. With this trick, we can completely avoid the IE 5.x

and IE 6 3 Pixel Bug. The web designer's freedom is not at all limited by this step, as the column order

2-1-3 is inherently only compatible with pure pixel- or percent-based layouts -- see Section 4.4.

Faux Columns Background: the floated #col2 on the left side needs a continuous column

background. The Faux Columns Technique is perfect. The container #main is assigned the graphic as

a left-aligned and vertically-repeating background image.

/* Background image for the left column - width 240 pixels |

Hintergrundgrafik für linke Spalte - Grafikbreite 240 Pixel */

#main {

 background-color: transparent;

 background-image: url(../../images/bg_pattern.png);

 background-repeat:repeat-y;

 background-position:left;

}

Now the layout is complete. Only Internet Explorer left to manage.

Adjustments for Internet Explorer

The adjustments for Internet Explorer are collected in the file iehacks_3col_advanced.css in the

css/patches folder. In the first step, the global adjustment file iehacks.css is linked.

/* Layout-independent adjustments ------------------- */

@import url(../../../../yaml/core/iehacks.css);

/* Layout-dependent adjustments --------------------- */

http://www.yaml.de/de/dokumentation/anwendung/freie-spaltenanordnung.html
http://www.yaml.de/de/dokumentation/anwendung/freie-spaltenanordnung.html
http://www.yaml.de/en/documentation/practice/any-order-columns.html

114 Practice

 114

@media screen, projection

{

/* No layout-dependent adjustments necessary */

}

Thanks to the care taken with iehacks.css, even in this relatively complex layout, no further

adjustments are necessary.

Alternative Solution for Centering Fixed Layouts (IE5.x Compatible)

The centering method used in this layout draft works in all modern browsers, no matter if with a

fixed or a flexible layout. Internet Explorer 5.x, an exception, will display the layout on the left.

For fixed layouts, there is alternative method for centering that will also work in the outdated

Internet Explorer 5.x.

body { padding: 0em; }

#page_margins {

 width: 960px;

 min-width:inherit;

 max-width:none

 position:absolute;

 top: 0;

 left: 50%;

 margin-left: -480px;

}

#page { width: 960px; margin: 1em; }

Note: the web page is centered here with a negative margin. This variant is accordingly incompatible
with flexible layouts.

115 Practice

 115

4.8.3 Layout Draft "Flexible Grids"

A "normal" column layout cannot always meet

all the demands of current website design. More

flexible systems are necessary to divide a web

page into smaller units. The term "grids" has

become common, as the units are often

oriented to a specific matrix of rulers and

spacing.

YAML can simply and easily adapt to this

concept using subtemplates. They allow space

to be divided according to percentages and can

simultaneously be nested within each other. The

layout example "flexible_grids" demonstrates

some of the possibilities of such grid-based

layouts.

/examples/06_layouts_advanced/flexible_grids.html

Layout Draft in Detail

The central stylesheet layout_grids.css contains the following CSS components:

/* import core styles | Basis-Stylesheets einbinden*/

@import url(../../../yaml/core/base.css);

/* import screen layout | Screen-Layout einbinden */

@import url(../../../yaml/navigation/nav_shinybuttons.css);

@import url(screen/basemod.css);

@import url(screen/content.css);

/* import print layout | Druck-Layout einbinden */

@import url(../../../core/print_base.css);

First, we link the basic stylesheet base.css from the yaml/core/ folder as well as the unmodified

navigation nav_shinybuttons.css.

Then we import the basic version of the screen layout basemod.css, which forms the basis of the

layout. For the print layout, we need to link the unchanged print_draft.css from the yaml/print/

folder.

Important: subtemplates are not generally linearized for print, as their use is too variegated to
predict. The page creator must regulate any desired linearization individually.

http://www.yaml.de/fileadmin/examples/06_layouts_advanced/flexible_grids.html

116 Practice

 116

Implementation of the Grid Concept

This draft is implemented by adding the

necessary subtemplate containers to the HTML

source code. As you can see in the screenshot,

the content columns of the basic layout are

obviously no longer necessary.

The label "subtemplate" actually implies that

these components are meant to be inserted into

the content columns. That was indeed the

original goal. Yet the nesting possibilities make

them particularly interesting for layout

development.

Correspondingly, I break here with the standard

source code structure and completely replace

the content columns #col1 to #col3.

Structure of the Upper 66|33 Block

First, we must ensure that the upper and lower

blocks are properly aligned with each other. The upper block uses a division of 66% | 33%, while the

lower block divides into 33% | 33% | 33%. The right containers of both blocks duly reach the same

width. In the second step, the 33% container of the upper block is divided again with a further

subtemplate into two equal areas. The content containers are inserted so that they take up the same

vertical space in the upper as in the lower block.

Structure of the Lower 33|33|33 Block

This is a simple subtemplate divided into 33% | 33% | 33%. The only peculiarity compared to the

standard structure is that the center content block (.subcl) must be floated left. The reason is

simple: the text within should end flush with that of the 66% container above it. If the block were

centered, the margins would be different in the upper and lower blocks.

<!-- #main: Beginning of Content Area | Beginn Inhaltsbereich -->

<div id="main">

 <!--Skiplink:Content -->

 <!-- Subtemplate: 2 Columns with 66/33 Division | 2 Spalten mit 66/33

Teilung -->

 <div class="subcolumns">

 <div class="c66l">

 <div class="subcl">

 <h2>Blog</h2>

 ...

 </div>

 </div>

 <div class="c33r">

 <div class="subcolumns">

 <div class="c50l">

 <div class="subcr">

 <h2>Sidebar</h2>

 ...

 </div>

117 Practice

 117

 </div>

 <div class="c50r">

 <div class="subcr">

 <h2>Advertisement</h2>

 ...

 </div>

 </div>

 </div>

 </div>

 </div>

 <!-- Subtemplate: 3 Columns with 33/33/33 Division | 3 Spalten mit

33/33/33 Teilung -->

 <div class="subcolumns">

 <div class="c33l">

 <div class="subcl">

 <h3>Article Archive </h3>

 ...

 </div>

 </div>

 <div class="c33l">

 <div class="subcl">

 <h3>Latest Comments </h3>

 ...

 </div>

 </div>

 <div class="c33r">

 <div class="subcr">

 <h3>Monthly Archive </h3>

 ...

 </div>

 </div>

 </div>

</div>

<!-- #main: Ende -->

The number of required DIV containers for this layout is naturally relatively large. Nevertheless, it is

based completely on flexible widths and adjusts itself optimally to all screen proportions. The

complete width is again assigned to the container .page_margins. The spatial divisions within

#main are automatically adjusted by the subtemplates themselves. Certainly we could simplify the

DIV constructions in this layout by using fixed widths -- but only then.

Adjustments for Internet Explorer

The adjustments for Internet Explorer are collected in the file patch_grids.css in the css/patches

folder.

/* LAYOUT-INDEPENDENT ADJUSTMENTS ----------------------------- */

@import url(../../../../yaml/core/iehacks.css);

/* LAYOUT-DEPENDENT ADJUSTMENTS ------------------------------- */

@media screen, projection

{

/* No layout-dependent adjustments necessary */

}

Special adjustments for Internet Explorer are not required in this case, as the subtemplates are a

fixed part of the framework. The adjustments are already all built into the file iehacks.css.

118 Tools & Tips

 118

5 Tools & Tips
5.1 Tools

In addition to the YAML framework itself and the sample layouts, the download package provides

you with further tools in the tools/ folder to make your work even easier.

5.1.1 Dynamically Generated Dummy Text

js/ftod.js

This compact Javascript tool generates dummy text (Lorem ipsum...) within any DIV container. Two

dynamically added text links can add or remove the paragraphs.

The script is used in various layout samples in the examples/ folder of the download package. The

use of the script is quite simple. Link it in the web page header:

<script type="text/javascript" src="your_path/ftod.js"> </script>

Immediately below, we configure the tool to define which areas of the page should be filled with the

dummy text. These HTML elements need unique IDs so the script can find them.

In the layout samples, these are the containers #col1_content to #col3_content of the three

content columns of the basic layout.

<script type="text/javascript">

window.onload=function(){ AddFillerLink("col1_content", "col2_content",

"col3_content"); }

</script>

5.1.2 Dreamweaver Styles

Dreamweaver is one of the most popular software tools for professional web design on the market.

However, it still has problems up to Version 7 with the WYSIWYG display of YAML-based layouts.

Dreamweaver MX 2004 (V7.0)

tools/dreamweaver_7/base_dw7.css

Conveniently, Dreamweaver does provide for alternative stylesheets just for drafting new pages in

WYSIWYG mode. These stylesheets are only used in the editor, and can compensate for

Dreamweaver's difficulty in displaying sophisticated CSS layouts.

For Dreamweaver MX 2004, you will find an alternative base stylesheet base_dw7.css in the

tools/dreamweaver_7/ folder, which comments out the problematic declarations. Instructions for

use with Dreamweaver are included in the file readme.txt.

119 Tools & Tips

 119

Dreamweaver 8

The current version has further improved the display quality in the editor's WYSIWYG mode, so that

there's usually no need for any special adjustments of the CSS components. The only known problem

currently is with the processing of the @media rules: Dreamweaver may overwrite the screen rules

with those for print.

Should this happen, it is usually easiest to hide the print stylesheets from the editor. The file

readme.txt in the tools/dreamweaver_8/ folder describes the necessary steps.

5.2 Tips on Designing Flexible Layouts

In closing, a few more things to note when developing flexible layouts.

5.2.1 Dealing with Large Elements

It is important to fully understand the functioning of a column layout using floats. The static column

#col3 "flows around" the two float columns #col1 and #col2 (even if this is not obvious in the

layout).

Background: Internet Explorer is the only browser that still has problems dealing with elements

which are too wide for the static #col3. In this case, the entire #col3 is shoved below the float

columns -- or even hidden entirely. The layout is destroyed, and the web page is barely usable.

Various solutions for this problem are available in Section 3.5.2.

All other modern browsers allow the too-wide elements to merely overflow into the neighboring

columns: the layout remains intact. Web designers must watch out for this problem, especially in

flexible layouts, as even a minimum layout width must guarantee content enough space in its

container.

5.2.2 Small Screens

Flexible layouts adjust themselves to the width available. The formatting (margins, sizes) of all

content elements should orient themselves to a sensible minimum width.

An often-used lower limit for screen display is the SVGA resolution of 800x600 pixels. This resolution

leaves a viewport of usable space of circa 760 pixels, as vertical scrollbars and even window borders

themselves reduce the available space. This is important to note, as horizontal scrollbars should be

avoided if at all possible.

All content elements (headings, tables, forms, graphics) should be created to fit into this minimum

width, so that the layout is displayed without errors or overlapping.

For even smaller resolutions (like on PDAs and other mobile devices), a new stylesheet can be quite

handy -- made accessible only via the CSS rule @media handheld. Linearized columns are better

suited to tiny displays: the containers will then appear one after the other, just as in the print

stylesheet.

http://www.yaml.de/en/documentation/css-components/css-adjustments-for-internet-explorer/structure-dependend-adjustments.html#c861

120 Tools & Tips

 120

5.2.3 Flexible Side Columns

The width of the static column #col3 in flexible layouts normally results automatically from the total

width of the browser window minus the widths of the displaying float columns. Should the float

columns #col1 or #col2 also require flexible widths, they should be measured in EM or percent.

Yet when using EM for float columns, please note: the float columns always extend themselves

toward the static column #col3. If the user zooms in on the text, #col3 will eventually become too

narrow to read, as the font size in each container increases, and the width of the float containers

increases proportionally to the font size as it is oriented to EM. The float columns force #col3 to

become narrower and narrower as they expand.

As a consequence, I recommend percentage values for flexible float columns. The proportions will

then remain constant, independent of font and window size.

5.3 Known Problems
5.3.1 Internet-Explorer 5.x: Collapsing Margin on #col3

 IE 5.x/Win IE 5.x/Mac IE 6 IE 7

Bug active Yes Unknown Yes *) Yes *)

*) This bug is actually present in these browser versions, but can be countered by the special IE

clearing (see Section 2.7: The Clearing of Column #col3).

Description: The column #col3 is defined with width:auto. Internet Explorer duly gives this

container the property hasLayout = false.

In the event that in a three-column layout, the left column is the shortest while the right column is

the longest, IE collapses the left margin of #col3.

This means that any border on #col3 (graphic-free column separator!) between #col1 and #col3

slips over to the left side of the page. Any background defined for #col3 will be stretched out to the

left edge of the page. This widening has no influence on the actual content of the DIV (text, images,

etc.), as #col3 is set to be behind the side columns via the z-index. The bug can be observed on

the following test page.

Testpage: ie_bug.html (only visible in IE5.x!)

Workaround 1: The visual effects of this bug can be avoided by using an image for the left-side

column separator, and defining this as a background image for another container, like #main.

Furthermore, #col3 should have no background assigned, neither graphic nor color (see Section 4.8:

Draft Layout "3col_advanced"). If required, these can be assigned to #main or .page.

Workaround 2: Alternatively, you can avoid the problem by activating hasLayout = true for #col3

from within the adjustment file for Internet Explorer:

...

#col3 {height: 1%;}

...

http://www.yaml.de/en/documentation/basics/clearing-column-col3.html
http://www.yaml.de/fileadmin/static_pages/ie_bug.html
http://www.yaml.de/?id=36
http://www.yaml.de/?id=36

121 Tools & Tips

 121

This CSS hack is, however, incompatible with the graphic-free column separators. Should you choose

this method, you must then use background images (Faux Columns technique) instead.

Note: YAML Version 2.5 eliminated this bug in IE 6 and IE 7. As IE 5.x is no longer very popular, this
bug does not often cause problems -- especially as it does not actually hinder access to the web page.

5.3.2 Mozilla & Firefox

Mozilla browsers up to version 1.7.0 (and Firefox up to version 1.0) contained a Float Clearing Bug.

This prevented the column separator of #col3 from reaching all the way to the footer if one of the

side columns were longer than the center column. This had no effect on graphics that were assigned

as background images.

Bugfix: the bug was fixed in the July 2004 with version 1.7.1, and is no longer relevant.

5.3.3 Netscape

Netscape 6 & 7: the browser versions 6.x are based on unfinished beta versions of Mozilla and are

extremely faulty. Although version 7 officially uses the rendering engine of Firefox 1.0.1 or 1.0.2,

there are great CSS compatibility problems here too -- especially with the versions 7.0 and 7.1.

YAML officially supports Netscape version 8 and up. YAML-based layouts had no display errors in this

version.

Netscape 7: Overflow Bug

The markup-free clearing using overflow:hidden causes display errors up to Netscape 7.1 when

used on static boxes. This means that the content in subtemplates is hidden. The following

workaround counters this bug.

Workaround: in general, it is enough to float the container in question. In this case, you must assure

that the container occupies the complete available width to avoid bothersome side effects in your

layout.

Should you use subtemplates and require support for these old Gecko engines, you can use the CSS

class .subcolumns_oldgecko instead of .subcolumns. This alternative CSS class incorporates the

float hack described above.

Note: if, when using .subcolumns_oldgecko, subsequent content is displayed next to the
subtemplate rather than after it (so far only seen in tables), assign the property display:inline to
those elements.

5.3.4 Opera

Opera 9.01 Bug: Opera's version 9.01 contains a hover bug, which collapses the margins between a

clearing element and the next element. The current version, 9.02, has fixed this bug.

Workaround: instead of using margins, you can create whitespace with padding or borders. This

avoids the problem entirely.

http://www.alistapart.com/articles/fauxcolumns/
http://www.positioniseverything.net/gecko/mozbug-clear.html

122 Tools & Tips

 122

Opera 6: although Opera 6 in principle should be able to display YAML-based layouts correctly,

certain conditions can lead to unpredictable phenomena such as unclickable areas, etc. These

browser bugs cannot be countered with reasonable measures. Happily, the browser is no longer

widespread enough to require our attention.

123 Tools & Tips

 123

5.4 Add-ons
5.4.1 General

The functionality of the framework can be expanded with add-ons. These are complementary

elements whose function is either entirely independent of YAML or only useful in specific situations.

Official add-ons are kept in the folder yaml/add-ons/ and are available in the download package as

well as in the project template Simple Project.

5.4.2 Add-on: Accessible Tabs & SyncHeight

Tabs have become extremely popular widgets on many websites, as many small blocks of

information can be nicely sorted into limited space. JavaScript frameworks like jQuery can create the

visual impression of tabs with only very few lines of code, and many other plugins are available with

countless configurations for visual presentation.

The problem that even the best scripts have is that the user does not get feedback on activation.

Most tab scripts change the presentation of the tabs and the visibility of their content, but leave the

user where he was - at the tab he'd clicked - with no idea of what just happened.

Dirk Ginader acted on my suggestion and has recently developed the jQuery plugin "Accessible Tabs"

and tested it thoroughly for accessibility. As the topic is so complicated, I ask you to read his own

blog post (in English and German) on its functionality and configuration.

The second little plugin with the name "SyncHeight" serves to synchronize the height of any chosen

containers via JavaScript. When using it in combination with the tab plugin, it becomes possible to

orient the height of the visible tab to the maximum amount of content of all the tabs. The following

example demonstrates the simple use of the Accessible Tabs as well as the optional synchronization

of the tabs with the SyncHeight plugin.

/examples/09_add-ons/accessible_tabs.html

The required files (jQuery plugin, tab stylesheet) are in the folder yaml/add-ons/accessible-tabs/.

The SyncHeight plugin is in the folder yaml/add-ons/syncheight/.

Further information on both plugins is on the following websites.

 Accessible Tabs mit jQuery (german)
 Accessible Tabs with jQuery (english)
 Plugin-Home: Accessible Tabs
 Plugin-Home: SyncHeight

http://www.jquery.com/
http://www.yaml.de/fileadmin/examples/09_add-ons/styled_microformats.html
http://blog.ginader.de/archives/2009/02/07/jQuery-Accessible-Tabs-Wie-man-Tabs-WIRKLICH-zugaenglich-macht.php
http://blog.ginader.de/archives/2009/02/07/jQuery-Accessible-Tabs-How-to-make-tabs-REALLY-accessible.php
http://github.com/ginader/Accessible-Tabs
http://github.com/ginader/syncHeight

124 Tools & Tips

 124

5.4.3 Add-on: Microformats

Microformats are special tags to semantically structure the contents of a website: events, business

cards, links, etc., so that they can be read and recognized by machines as well as humans. The

content itself is not changed, only the markup.

Without special formatting, microformats are generally invisible for users without special settings --

which hinders their wide use and usefulness. It is better to make microformats immediately visible

and recognizable to your visitors.

The folder yaml/add-ons/microformats/ contains the stylesheet microformats.css, which contains

standard formatting for the most often-used microformats.

The use of this add-on is demonstrated in the following layout sample:

/examples/09_add-ons/styled_microformats.html

Further information on microformats can be found on the following websites:

 microformats.org
 Microformats Wiki
 Mikroformate (german)
 mikroformate.org (german)
 The BigPicture on Microformats

5.4.4 Add-on: RTL Support

This add-on provides all the relevant components for working with YAML in Hebrew or Arabic

languages whose text flows from right to left.

The plugin's files are in the folder yaml/add-ons/rtl-support/. Within that folder are the subfolders

core/ with the adjustments of the core elements of the framework: base-rtl.css and iehacks-rtl.css.

The folder navigation/ contains the adjustments for the standard included menus.

Basic Principles

The support of right-to-left languages comes from special stylesheets which overwrite existing CSS

rules to control text direction and content positioning. These stylesheets thus only contain

incremental changes and include the suffix -rtl in the filename: the adjustments necessary for the file

base.css are found in the file base-rtl.css.

The activation of the changed text flow from right to left takes two steps. The first step is to change

the text direction with the dir attribute of the HEAD element of the page: <head dir="rtl">. The

second step is to merely link the RTL stylesheets into your layout. Within the base-rtl.css, the CSS

property direction: rtl; is assigned again to the BODY element.

Along with the text direction, many other CSS properties must be changed -- margins, indentations,

etc., to present the text correctly.

http://www.yaml.de/fileadmin/examples/09_add-ons/styled_microformats.html
http://microformats.org/
http://microformats.org/wiki/Main_Page
http://mikroformate.de/
http://mikroformate.org/
http://www.digital-web.com/articles/the_big_picture_on_microformats/

125 Tools & Tips

 125

A sample of base-rtl.css:

ul, ol, dl { margin: 0 1em 1em 0; }

li {

 margin-left: 0;

 margin-right: 0.8em;

}

The corresponding section of base.css:

ul, ol, dl { margin: 0 0 1em 1em } /* LTR */

li {

 margin-left: 0.8em; /* LTR */

 line-height: 1.5em;

}

Properties within a regular stylesheet which are overwritten with other values for the RTL display are

always marked with the comment /* LTR */.

Example

The use of the add-on is demonstrated in the following example:

/examples/09_add-ons/rtl_support.html

The corresopnding central stylesheet layout_rtl_support.css always links the normal YAML

components first and then the RTL variation to overwrite them.

/* import core styles | Basis-Stylesheets einbinden */

@import url(../../../yaml/core/base.css);

@import url(../../../yaml/add-ons/rtl-support/core/base-rtl.css);

/* import screen layout | Screen-Layout einbinden */

@import url(../../../yaml/navigation/nav_shinybuttons.css);

@import url(screen/basemod.css);

@import url(screen/content.css);

/* import rtl-support changes | RTL-Support Anpassungen einbinden */

@import url(../../../yaml/add-ons/rtl-support/navigation/nav_shinybuttons-

rtl.css);

@import url(screen/basemod-rtl.css);

@import url(screen/content-rtl.css);

/* import print layout | Druck-Layout einbinden */

@import url(../../../yaml/print/print_003_draft.css);

Note: YAML is a tool for developing website layouts. The modular CSS structure as well as the
support for RTL languages via complementary stylesheets with only the necessary changes is based
on this concept.

When the layout development of any particular site is finished, the CSS components should be
optimized for production: comments removed and files combined to minimize the number of HTTP
requests.

http://www.yaml.de/fileadmin/examples/09_add-ons/rtl_support.html

126 Changelog

 126

6 Changelog
6.1 Changes in 3.x
6.1.1 Changes in Version 3.2 [27.10.09]

YAML-Core

New

 base.css - merged base.css and print_base.css (smaller filesize)
 base.css - New subtemplate-set (20%, 40%, 60% and 80%), equalized mode is available
 base.css - new skip link solution, that allows overlaying
 js/webkit-focusfix.js -JavaScript based fix for focus problems in Webkit-browsers (Safari,

Google Chrome)

Improvements

 base.css - Split up media types to "all", "screen, projection" and "print", helps to avoid
several problems in print layout.

 base.css - using child selectors for equalize-definition saved about 400 bytes of code
 base.css - moved visual print settings (fontsize & hidden containers) to print-stylesheets
 iehacks.css - improved code for robustness of all major layout elements
 slightly better optimized slim-versions of core-files

Bugfixes

 base.css - removed <dfn> from the hidden elements again
 iehacks.css - fixed a bug that made subtemplates invisible in IE 5.01
 slim_iehacks.css - Clearfix hack was broken in IE7

Dropped Features

 base.css - removed code to force vertical scrollbars in FF, Safari & Opera (replaced by CSS3
solution in user files)

 iehacks.css - removed compatibility code for #page_margins and #page IDs.
 iehacks.css - Column Backgrounds with #col3 border-styling isn't available anymore, due to

accessibility and maintenance issues in IE

General

New

 forms.css - added .full class as an option to get full width for <input>, <select> and
<textarea> elements in small columns or within subtemplates.

 content_default.css - added styles for <big>, <small>, <dfn> and <tt>

127 Changelog

 127

Improvements

 forms.css - .yform class can be added to any element. It's not bundled with <form>
element anymore.

 forms.css - ajdusted fieldset- & div-paddings to avoid clipping of element outlines and
dropshadows in Safari.

 forms.css - cleaner and easier fix for fieldset/legend problem in all IE's (including IE8).
 forms.css - Formatting for "reset" and "submit" buttons changed from IDs to classes to allow

multiple forms on a webpage. Styling available via input[type=reset] or input.reset
to older support IE versions (IE5.x & IE6).

 content_default.css - added a fix to <sub>, <sub> to prevent the visual increase of line-
height.

 nav_slidingdoor.css - Removed predefined indent margin of 50px. Indention has to be set by
the user in basemod.css

 nav_shinybuttons.css - Removed predefined indent padding of 50px. Indention has to be set
by the user in basemod.css

 tools/dreamweaver_7/base.css - updated to recent codebase.
 updated jQuery library to version 1.3.2

Bugfixes

 forms.css - corrected issue in Firefox 1.x & 2.x where form labels weren't shown correctly in
columnar display (FF-Bug)

 forms.css - no more jumping checkboxes & radiobuttons in IE8 and Opera
 basemod_draft.css - changed predefined selectors #page_margins and #page into

.page_margins and .page
 content_default.css - nested lists (ol,ul) will be displayed correctly now.
 markup_draft.html - moved charset metatag in front of title element to allow UTF-8 there

Dropped Features

 debug.css - removed debug-stylesheet from yaml/ folder. This feature is replaced by YAML's
new Debug Application

Add-ons

New

 Accessible-Tabs plugin for jQuery
 SyncHeight plugin for jQuery

Improvements

 Microformats - added missing icons: xfn-child.png, xfn-parent.png, xfn-small.png and xfn-
spouse.png

 RTL-Support - [iehacks-rtl.css] added an option to force the vertical scrollbar to the right in
Internet Explorer (disabled by default)

http://debug.yaml.de/

128 Changelog

 128

Examples

New

 All examples - added WAI-ARIA landmark roles for accessibility improvement
 All examples - added optional CSS3-based code to force vertical scrollbars (overflow-y)
 multicolumnar_forms.html - demonstrates two easy ways to create flexible

multicolumnar forms
 accessible_tabs.html - example for the usage of the Accessible-Tabs and the

SyncHeight add-on
 3col_liquid_faux_columns.html - demonstrates "Liquid Faux Columns" technique

Improvements

 3col_gfxborder.html - changed ID's to classes to allow multiple usage
 building_forms.html - JavaScript Detection added
 equal_height_boxes.html - added a second usage example (simple)
 dynamic_layout_switching.html - added JavaScript detection code and option to "show all

columns"

Removed

 3col_column_backgrounds.html - this feature isn't supported anymore due to accessibility
issues

Bugfixes

 2col_right_13.html - corrected fix for 3-pixel-bug in IE-patch file
 dynamic_layout_switching.html - corrected fix for 3-pixel-bug in IE-patch file
 equal_height_boxes.html - still used #page_margins and #page ID's.
 index.html - link to last example corrected
 several CSS files were still not saved in UTF-8
 UTF-8 BOM signature removed from some files in examples/04_layout_styling/

129 Changelog

 129

6.1.2 Changes in Version 3.1 [20.01.09]

New Functions and Extensions

 Form Construction Kit
YAML now includes a complete building kit of HTML and CSS building blocks for building
forms. For more information, see Section 3.10.

 Support for content boxes of the same height
YAML's subtemplates can now produce boxes of the same height - that of the container with
the most content. All with CSS. For more information, see Section 4.5.

 A better standard template for designing content
The content_default.css has been completely reworked and expanded and now contains a
nearly complete set of set formats for texts, tables, and images.

 Add-on: support for microformats
This add-on provides visual emphasis for the most important microformats.

 Add-on: support for RTL languages
This add-on provides complete support for working with right-to-left languages (Hebrew and
Arabic languages). It includes the required adjustments of the core files and navigation
elements.

 Layout examples included
The number of included examples has been completely reworked and expanded. 7 new
sample layouts demonstrate the use of the new functions.

 Download package and Simple Project
The JavaScript library jQuery version 1.3 is now included in both packages in the folder
js/lib/.

Changes and Corrections

(X)HTML Markup

 IDs #page_margins and #page are now CSS classes
This change allows the classes .page_margins and .page to be used more than once per
page, thus broadly expanding the design possibilities. The change has no influence on
existing YAML layouts and their updates. The necessary IE adjustments for the IDs are still
included.

 Unification of the navigation elements
The markup of the included navigation blocks has been unified. All IDs were transformed
into CSS classes and all classes named in a uniform manner.

Core Files [base.css]

 Expansion of the reset block
The blockquote and the quote elements are now included in the reset block. Any browser-
predefined quotation marks are removed in favor of a uniform presentation.

 Bugfix for the unfortunate rendering of select elements in Firefox
The reset block has been expanded to include 1px padding for select elements.

 Generic layout classes removed

The CSS classes .hidecol1, .hidecol2 and .hideboth must be adjusted for specific layouts,

so they belong in the user CSS. The new layout example "dynamic_layout_switching"

demonstrates their use.

http://www.yaml.de/en/documentation/css-components/formularbaukasten.html
http://www.yaml.de/en/documentation/practice/subtemplates.html
http://www.jquery.com/

130 Changelog

 130

 Reworking of classes for hidden content

The declarations for width and height were removed from the classes .skip, .hideme, and

.print so they could more easily be made visible. The DFN element was added to the

hidden elements.

Core Files [iehacks.css]

 [fix] Reworking of the z-index values for content columns
Now Internet Explorer 6 users can again mark content in #col3 in all column variations.

Core Files [print_base.css]

 Font family no longer set
The font specification "Times New Roman" has been removed from the print stylesheet. The
print version now uses the same font as the screen layout. The switch to the pt (point) unit
of measurement remains, the standard size is still set to 10pt.

 Marking abbreviations and links
The CSS rules for visibly marking abbreviations and linked urls have been moved to the print
stylesheet (print_xyz_draft.css) to be turned on or off.

 Introducing the CSS class .noprint
Dynamic content elements or areas that are too difficult to select via CSS can now be hidden
from the print version with the .noprint class.

Navigation [shiny_buttons.css]

 [fix] Collapsing margin
The collapsing of the navigation's left margin in Internet Explorer 5.x and 6.0 was corrected.

Graphics

 File size optimization
All included graphics files of the YAML folders and the layout examples were optimized for
size and the majority converted to PNG images.

 Included Photoshop templates
All Photoshop templates (for example, the gfxborder graphics) are now collected in one
central folder: examples/photoshop-files/.

6.1.3 Changes in Version 3.0.6 [09.06.08]

Changes and Corrections

Core-Files

 [fix] Missing .print definitions added
Elements with class .print were invisible in print layout. This is fixed now.

 [fix] Opera & attribute selectors
Opera 9.2x seems to have a bug concerning the optimized attribut selectors (missing
brackets) in slim_print_base.css. Although all definitions are within @media print this bug
leads to rendering problems in screenlayout. This bug is fixed now.

131 Changelog

 131

 [new] Improved debug-stylesheet
YAML's debug stylesheet now visualizes xhtml page structure, subtemplates and special
markup for content elements.

6.1.4 Changes in Version 3.0.5 [24.05.08]

Changes and Corrections

 Update of license conditions
For free use under Creative Commons License (CC-A 2.0) naming the author is no longer
necessary. A back link to YAML homepage is sufficient. The license texts of commercial
licenses (YAML-C) have been revised and clarified in relation to reproduction and
redistribution.

 Overall code clean-up
CSS scripting layout (white spaces within brackets and semicolon behind last properties)
within YAML files was equalised.

 Better optimised slim-files
All core files where optimised for even smaller slim-variants for production use.

 @media rule for screen layouts changed
basemod- and IE-patch files contain all relevant CSS rules for the screen layout. The @media
rules within these files have been changed to screen, projection. Therefore, the screen
layout shouldn't have an impact on the print layout anymore.

Core-Files [base.css]

 Positionierung of #topnav
Container #topnav gets property position:absolute only within #header. In any other
case it's a static container with text-alignment to the right.

 Subtemplates
CSS class .subcolumns_oldgecko doesn't get overflow:hidden anymore. Containing
Floats is done via float:left.

 z-index
Specific z-index values were be removed from base.css (more simple fix for IE Clearing bug in
iehacks.css). This should help a lot to avoid problems with e.g. dropdown menus.

Core-Files [iehacks.css]

 Bugfix for IE-Clearing-Bug using negative z-index
The IE-Clearing-Bug can't be fixed completely in IE 5.x. But now there is a more simple way to
avoid problems in IE by using one single negative z-index for #col3, than defining positive
values for all content columns.

Layout examples [Folder /examples/]

 New "Special Interest" example: "3col_fullheight"
In this example the overall layout height will be expanded to the bottom of the viewport, if
page content is'nt enough to fill the screen. This example is labeled as "special interest" as a
concept proof for for experienced users only.

 Improved JS-Expression for min-/max-width in IE 5.5 and IE6
The new JS-expression works without problems in Quirks Mode and EM based values will be
calculated - as they should - from parent elements font size.

132 Changelog

 132

 Small screen layoutadjustments
Some minor changes were made in the screen layout (basemod.css) to bring it mor in line
with the YAML Builder and the Simple Project Example.

6.1.5 Changes in Version 3.0.4 [27.11.07]

Changes and Corrections

Core-Files [base.css]

 Better solution to force vertical scrollbars in Firefox
The new solution forces vertical scrollbars with html { height: 100%; margin-
bottom: 1px; } that leeds to only 1 Pixel overlap and is much more pleasing.

 Changes in the reset-CSS block
The cite element was removed from the block. The blockquote element doesn't get
predefined properties font-size and width anymore. This can be done by the user within
content.css file.

 Container #header
The container #header gets clear:both property. Now it is easily possible to switch
position of #header and #nav in the markup without negative interactions of floating
navigation elements on #header.

 Generic classes for l ayout switching
The naming of the classes .hideleft and .hideright wasn't semantic, as the source
order of column containers is indepentend from their position in screen layout. Thererfore
the classes are renamed to .hidecol1 and .hidecol2, which makes them clearly assigned.
The class .hidenone is obsolete and was removed.

Core-Files [iehacks.css]

 Improved layout stability
Better stability for flexible columns in IE5.x + IE6 by adding #main {position:relative}.
This avoids wrong positioning of columns after resizing the browser window while using IE-
Expressions.

 Bugfix added for List-Numbering-Bug
Affects all IE versions 5.01 - 7.0: If a list element of an ordered list gets a property that
activates hasLayout, IE doesn't correctly assign numbers to the list items.

Screenlayout Draft [content_default.css]

 Fix for Gecko problems and font-size reset of monospaced elements
Elements using monospaced font (textarea, tt, pre, code) will get a standard font-size of
13px instead of 16px when resetting font-size. A bugfix was added.

Layout examples [Directory /examples/]

 [3col_2-1-3]
improved CSS design without activating IE/3-Pixel-Bug,
changed imported print-stylesheet to print_100_draft.css.

 [3col_3-1-2]
improved CSS design without activating IE/3-Pixel-Bug,
changed imported print-stylesheet to print_100_draft.css.

133 Changelog

 133

 [3col_fixed_seo]
Bugfix for wrong min-width behavior of Safari 3,
better CSS design without activating IE/3-Pixel-Bug

 [3col_gfxborder]
Naming of edge graphics and -containers changed to be more consistent.

 Namespace added to <html> element in all layout examples
 3-column-examples (03_3col_layouts)

Fixed lateral paddings of content containers within the columns according to their position
on screen.

6.1.6 Changes in Version 3.0.3 [18.08.07]

Changes and Corrections

Core Files

 [iehacks.css] Bugfix for input elements in IE6
The new bugfix for the Italics-Bug in V3.0 had a side effect, that input elements were
arbitrary extended in IE6. A fix was added and slim_iehacks.css was updated.

6.1.7 Changes in Version 3.0.2 [01.08.07]

Download Package & Documentation

 [Doc en/de] some URL’s corrected.

 [Doc de] section numbering corrected

 [Doc de] Section 1.4: futher links added

 [CSSDoc-Comments] beautified indenting of comments in css files

Änderungen und Korrekturen

Core Files

 [base.css] fix for missing scrollbars in Opera 9.x
Negative margins of classes .skip, .hideme and .print were reduced to -1000em to
avoid this bug.

 [iehacks.css] CSS bugfixes for different media
Bugfixes for the Doubled Float Margin Bug and the Expanding Box Problem only affect output
on screen via @media screen rule.

 [print_base.css] print preview in IE6 & linearization of subtemplates
Subtemplates are linearized by default. The print preview in IE6 is now more stable.

Navigation Elements

 Adjusted background colors of list elements in nav_slidingdoor.css and nav_shinybuttons.css.

Other

 Some small adjustmens in the layout examples (page titles changed)

6.1.8 Changes in Version 3.0.1 [15.07.07]

134 Changelog

 134

Changes and Corrections

Core Files

 [fixed] A small rounding bug in Subtemplates
In v3.0 the 33- and the 66-percent Subtemplates container of had wrong widhts.

6.1.9 Changes in Version 3.0 [09.07.07]

Download Package & Documentation

 Bilingual Documentation
The extensive documentation as well as all comments in the framework's CSS files are now
available in English and in German.

 Comprehensive Restructuring of the Download Package
The download package now distinguishes clearly between the actual framework, the
documentation, and layout examples and tools. The structure of the framework was
reworked.

 Optimized Stylesheets for Use in Production
The core files of the framework were optimized for use on the live server: they now contain
no comments and the file size was greatly reduced.

 Conversion of all Files to Character Encoding "UTF-8"
All framework files were converted to UTF-8 character encoding. As the comments in the
files are now available in more than one language, this step was logical and unavoidable.

 CSS Comments according to the CSSDOC Standard
The CSSDOC Standard offers a machine- and human-readable format for comments within
CSS files.

 Better Support of Dreamweaver 7 and 8
For Dreamweaver 7 (MX 2004), an alternative base stylesheet is included, which enables a
nearly error-free display of YAML-based layouts in the WYSIWYG design mode. A readme.txt
is available for both Version 7 as well as for Version 8; this explains all the necessary
adjustments for working with YAML.

 Numerous New Sample Layouts
The number of included example layouts has increased greatly. All layout examples base on
an appealing new design.

Changes and Corrections

Markup

 [changed] Simplification of the (X)HTML Source Code
The class .hold_floats must no longer be explicitly assigned to #page: the bugfix is
activated by default in the iehacks.css file.

Core Files

 [new] Optimized Stylesheets for Production
The stylesheets in the core/ folder of the YAML framework are also available in optimized
form (smaller filesize). These versions have no comments and compromise between
readability and smallest possible file size. This saves valuable bandwidth on the live server.

135 Changelog

 135

 [new] Alternative Column Concept based on Classes
Four generic CSS classes allow an even simpler choice of which columns display in the basic
layout.

 [new] Generic CSS Classes for Hidden Content
The CSS classes.hideme and .print now provide two options for hiding content onscreen
and yet keeping it available for screen readers and text browsers. The classes are defined in
base.css and thus always available.

 [new] Handling Oversized Elements in IE
IE5.x and 6.0 can now interpret the CSS class .slidebox, defined in iehacks.css, to let
oversized elements merely overlap onto neighboring layout areas rather than destroying a
page's layout.

 [new] New Bugfix for IE Italics Bug
A new universal bugfix in base.css solves the problem with italic fonts in IE 5.x and 6.0.
Previously, this bug was addressed in the content as it occurred.

 [new] IE7 Bugfix for Print
IE7 has problems printing #col3 because it does not have the property 'hasLayout' and
correspondingly forces page breaks. The file iehacks.css now contains a suitable bugfix.

 [new] Bugfix for Firefox 2 overflow:hidden Bug for Print
Firefox Version 2.x has problems dealing with the property overflow:hidden in printing. A
suitable bugfix is now in the print_base.css file for the generic class .floatbox.

 [changed] Min-/max-width Support for IE 5.x and IE6
The script solution via expressions was reworked, so that IE need no longer be set to Quirks
Mode and can interpret EM-based values.

 [changed] Subtemplates
The CSS of the block and content containers was simplified. The block container now
encompasses the content by virtue of its float property. Oversized content elements are now
no longer cut off. The compensation for rounding errors was also improved, so that
.subcolumns itself is no longer an oversized container (> 100%). The alternative
class.subcolumns_oldgecko allows support among old Gecko browsers (i.e. Netscape <
Version 7.2).

 [changed] Skip-Link Navigation
The skip-links are now immediately visible as soon as the tag navigation is activated. This
behavior is required for layout accessibility.

 [changed] Reworked Print Stylesheets
All layout-independent adjustments for printing were split off into an independent CSS
component file print_base.css, which is loaded via the print stylesheet. This helps keep track
of the styles and individual changes are more easily made.

 [changed] Hover Effects for Links in IE7
Hover effects are no longer blocked in IE7 via iehacks.css.

 [removed] Old IE Clearing (up to V2.4) is no longer supported
The CSS declarations for the old CSS class .clear_columns were removed from the
base.css file.

 [removed] Hacks for IE Mac Removed from the Project
IE/Mac interprets neither the normal style declarations nor the IE adjustments, as they are
loaded via Conditional Comments and the @media rule. The Mac hacks (special
comments) were rather confusing in the iehacks.css file, and were deleted. YAML supports
this outdated browser by displaying all content without any CSS formatting at all.

136 Changelog

 136

Navigation Elements

 [new] Navigation Elements Generally
All included navigation lists support the tab navigation correctly, including the emphasis on
the currently active menu item.

 [new] Navigation Elements Generally
The active menu item in any navigation element can be set either via the ID #current or
now also via strong.

 [new] Expansion of the vlist Navigation
The vlist navigation can now display four instead of the previous two navigation levels.

 [removed] The Navigation "Sliding Door I" removed
The version "Sliding Door II" is still available and was renamed to nav_sliding_door.css.

Content Design

 [new] New CSS Component content_default.css
The file content_default.css is located in the yaml/screen/ folder and provides basic
formatting for all standard content elements and can be incorporated if desired.

 [new] Generic CSS Classes for Content Design
The content_default.css component offers three new CSS classes .note, .important, and
.warning for emphasizing content.

Other

 [new] Debugging Stylesheet
A new optional stylesheet debug.css makes layout debugging easier (see Section 4.8: Drafting
and Debugging). Predefined CSS classes for displaying pixel grids, transparencies, or
background colors allow a simple emphasis / test of layout elements. The stylesheet also
warns the user, should the core stylesheet iehacks.css not load correctly.

http://www.yaml.de/en/documentation/practice/drafting-and-debugging.html
http://www.yaml.de/en/documentation/practice/drafting-and-debugging.html

137 License conditions

 137

7 License conditions
7.1 Current and future releases

YAML has been licensed under a Creative Commons Attribution 2.0 License (CC-A 2.0) since version

2.2. For commercial use, two alternative license models are available (see below).

7.2 Older releases

Older releases before version 2.2 were published exclusively under a Creative Commons Attribution

2.0 License (CC-A 2.0).

7.3 General Information

The Creative Commons license permits both the non-commercial and the commercial use of the

framework on the condition that a backlink to the project homepage remains in the layout (see the

next section).

Freelancers and web agencies, however, cannot always conform to the terms of use of the Creative

Commons license, as customers seldom desire copyright notices of third party projects on their sites.

In order to make the use of YAML possible in these cases, two license models for commercial use

have been developed, alternative to the Creative Commons license. Both models are set up as single

payments and include the use of any future releases.

7.4 YAML under Creative Commons License (CC-A 2.0)

The YAML framework is published under the Creative Commons Attribution 2.0

License, which permits both private and commercial use.

Condition: For the free use of the YAML framework, a backlink to the YAML homepage
(http://www.yaml.de) in a suitable place (e.g.: footer of the website or in the imprint) is required.

A small thank you

In general it would be nice to get a short note when new YAML-based projects are released. If you

are highly pleased with YAML and the forum support, perhaps you would like to take a look at my

Amazon wish list?

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/de/
http://creativecommons.org/licenses/by/2.0/de/
http://www.yaml.de/
https://www.amazon.de/gp/registry/wishlist/108Q0YYJ49UC2/

138 License conditions

 138

7.5 YAML under Commercial License (YAML-C)

Two alternative license models are available for using the framework without the otherwise required

backlink.

Commercial licenses can be orderd in the YAML Webshop at https://shop.yaml.de.

Project Related License 59.50 EUR
(incl. 19% Taxes)

The purchaser receives the right to use the YAML framework without naming the author or linking
back to the YAML page within one project, named by the purchaser. The license includes the use of
any future releases.

Reproduction and redistribution or providing the code for downloading is only allowed with written
permission of the author.

General License 119.00 EUR
(incl. 19% Taxes)

The purchaser receives the general right to use the YAML framework without naming the author or
linking back to the YAML page. This right is independent of any project and is permanent. The license
includes the use any of future releases.

Reproduction and redistribution or providing the code for downloading is only allowed with written
permission of the author.

https://shop.yaml.de/

	Introduction
	What is YAML?
	What is YAML not?
	Advantages of the Framework
	Updates

	Accessibility & Web standards
	Further Links (in German)

	The Structure of the Download Package
	The Download Package
	The Framework Files
	Included Layout Samples
	Tools for Layout Development

	Browser Support
	IE 5/Mac, Netscape 4 & Co.
	Thanks

	Basics
	A Comprehensive Concept
	/The Basics: Floats
	Markup-Free Clearing
	Method 1: Clearfix
	Method 2: Overflow
	Why Two Clearing Methods?

	Structure of the XHTML Source Code
	Doctype Choice
	The Structure in Detail
	Variations of the Markup
	Design Freedom with the Combination Model

	Column Order in Source Code
	How Floats Work
	Layout Preparation
	Preparing the Content

	The Clearing of #col3
	Global Clearing Makes #col3 the Longest Column
	Special Clearing Solution for Internet Explorer
	IE Clearing in Internet Explorer 5.x
	IE Clearing in Internet Explorer 6.0
	IE Clearing in Internet Explorer 7.0
	Hiding Clearing Containers in Layouts

	Graphic-Free Column Divider

	Skip Link Navigation
	Skip Link Navigation in the YAML Framework
	Invisible and Accessible
	Correcting Focus Problems in Webkit Browsers

	CSS Components
	The CSS Concept
	Cascading

	Naming Conventions
	Basic components (core files)
	Complementary components
	Patches
	File templates

	The Central Stylesheet
	Integration & Import of the CSS Components
	Adjustments for Internet Explorer

	The Base Stylesheet base.css
	Browser Reset - Uniform Starting Point for All Browsers
	Eliminating margins and paddings
	Avoiding the italics bug in IE
	Font size and rounding errors
	Standard values for lists and quotations

	Standard CSS Classes
	Clearing Methods
	Skip Links and Invisible Content

	Building Blocks for the Screenlayout
	Basic Layout - Universal Fallback
	Flexible Grid Blocks

	Specifications for the Print Version
	Float Clearing in the Print Version
	Adjusting the print version for specific content

	CSS Adjustments for Internet Explorer
	Structure of the CSS Patch File for Internet Explorer
	Integration of the CSS Adjustments in YAML's Layout
	Structure- and Layout-Independent Bugfixes
	Fundamental CSS Adjustments
	Adjusting Clearing Methods for IE
	Increasing the Reliability of the Layout
	Avoiding an Incomplete Display of Column Content
	Escaping Floats Bug
	Guillotine Bug
	Double Float-Margin Bug
	Expanding Boxes in Internet Explorer
	Internet Explorer and the Italics Problem
	Disappearing List Background Bug
	List Numbering Bug

	Structure- and Layout-Dependent Bugfixes
	3-Pixel-Jog Bug
	Handling Oversized Elements
	Disappearing Block Background Bug

	Creating the Screen Layout
	Components of the Screen Layout
	Avoid jumping in centered layouts
	Design of the Layout Elements
	Desiging the Navigational Elements and the Content
	Putting the Layout Together

	Navigation Components
	/Sliding Door Navigation
	/Shiny Buttons Navigation
	Vertical List Navigation
	Adjustments for Internet Explorer

	Content Design
	The content_default.css Template
	Setting the basic font size
	Headlines and Copytext
	HTML List Design
	Text Markup
	Generic Classes for Positioning and Highlighting Content Elements
	Automatic Formatting of Hyperlinks
	Simple Table Design

	Layout Adjustments for Printing
	Printing Preparation
	Choosing the Printable Column Containers

	Structure of the Print Stylesheets
	Switching the Units of Measurement for Font Sizes
	General Layout Adjustments
	Controlling page breaks
	Linearization of the Container Columns
	Optional Column Labeling
	Automatic Display of URLs, Acronyms and Abbreviations

	The Form Construction Kit
	The Markup
	HTML Blocks for Form Elements
	Textfield
	Textarea
	Select
	Checkbox
	Radio-Buttons
	Button-Set

	The CSS of the Form Components
	Visual Design of the Form Elements
	Technical Basis of the Form Construction Kit
	Alternative Display Variation

	Adjustments for Internet Explorer
	General Adjustments
	Correct Display of Legends Within Fieldsets

	Practice
	Five Rules...
	Samples Included
	Tips for CSS Beginners

	Recommended Project Structure
	Step 1: Creating Files and Folders
	Step 2: Adjusting the Paths
	Step 3: Layout Design

	/Basic Variations
	3-Column Layouts
	2-Column Layouts
	Further Alternatives for Sorting the Containers
	Generic CSS Classes for Layout Design

	Variable Order and Use of Content Columns
	/Ordering Columns
	Column Order 1-3-2 and 2-3-1
	Column Order 1-2-3 and 3-2-1
	Column Order 2-1-3 and 3-1-2
	The Upshot

	Subtemplates
	Structural Composition
	The Container
	Dividing Space with DIV Blocks
	The Content Containers

	Adjusting the Subtemplates for Internet Explorer
	Examples for Subtemplates Use
	50 / 50 Split
	33 / 33 / 33 Split
	Divisions According to the Golden Ratio
	Endless Variety with Nesting

	Special Case: Equal Height Boxes
	Technical Background
	In Practice

	Column Design
	Example 1 - Column Separators
	/Example 2 - Column Backgrounds

	Minimum & Maximum Widths for Flexible Layouts
	CSS Support Lacking in Internet Explorer 5.x and 6.0
	Solution 1: IE Expressions
	Solution 2: External Javascript "minmax.js"

	Selected Application Examples
	The Screen Layout of the Examples
	Adjustments of the Screen Layout for Internet Explorer
	Draft Layout "2col_advanced"
	Layout Draft in Detail
	Adjustments for Internet Explorer

	/Layout Draft "3col_advanced"
	Layout Draft in Detail
	Adjustments for Internet Explorer
	Alternative Solution for Centering Fixed Layouts (IE5.x Compatible)

	Layout Draft "Flexible Grids"
	Layout Draft in Detail
	/Implementation of the Grid Concept
	Structure of the Upper 66|33 Block
	Structure of the Lower 33|33|33 Block
	Adjustments for Internet Explorer

	Tools & Tips
	Tools
	Dynamically Generated Dummy Text
	Dreamweaver Styles
	Dreamweaver MX 2004 (V7.0)
	Dreamweaver 8

	Tips on Designing Flexible Layouts
	Dealing with Large Elements
	Small Screens
	Flexible Side Columns

	Known Problems
	Internet-Explorer 5.x: Collapsing Margin on #col3
	Mozilla & Firefox
	Netscape
	Netscape 7: Overflow Bug

	Opera

	Add-ons
	General
	Add-on: Accessible Tabs & SyncHeight
	Add-on: Microformats
	Add-on: RTL Support
	Basic Principles
	Example

	Changelog
	Changes in 3.x
	Changes in Version 3.2 [27.10.09]
	YAML-Core
	New
	Improvements
	Bugfixes
	Dropped Features

	General
	New
	Improvements
	Bugfixes
	Dropped Features

	Add-ons
	New
	Improvements

	Examples
	New
	Improvements
	Removed
	Bugfixes

	Changes in Version 3.1 [20.01.09]
	New Functions and Extensions
	Changes and Corrections
	(X)HTML Markup
	Core Files [base.css]
	Core Files [iehacks.css]
	Core Files [print_base.css]
	Navigation [shiny_buttons.css]
	Graphics

	Changes in Version 3.0.6 [09.06.08]
	Changes and Corrections
	Core-Files

	Changes in Version 3.0.5 [24.05.08]
	Changes and Corrections
	Core-Files [base.css]
	Core-Files [iehacks.css]
	Layout examples [Folder /examples/]

	Changes in Version 3.0.4 [27.11.07]
	Changes and Corrections
	Core-Files [base.css]
	Core-Files [iehacks.css]
	Screenlayout Draft [content_default.css]
	Layout examples [Directory /examples/]

	Changes in Version 3.0.3 [18.08.07]
	Changes and Corrections
	Core Files

	Changes in Version 3.0.2 [01.08.07]
	Download Package & Documentation
	Änderungen und Korrekturen
	Core Files
	Navigation Elements
	Other

	Changes in Version 3.0.1 [15.07.07]
	Changes and Corrections
	Core Files

	Changes in Version 3.0 [09.07.07]
	Download Package & Documentation
	Changes and Corrections
	Markup
	Core Files
	Navigation Elements
	Content Design
	Other

	License conditions
	Current and future releases
	Older releases
	General Information
	YAML under Creative Commons License (CC-A 2.0)
	A small thank you

	YAML under Commercial License (YAML-C)

